diff -r 4fe65149f3fd -r 740b23f1138a src/HOL/Analysis/Abstract_Topological_Spaces.thy --- a/src/HOL/Analysis/Abstract_Topological_Spaces.thy Sun Jul 02 14:28:20 2023 +0200 +++ b/src/HOL/Analysis/Abstract_Topological_Spaces.thy Mon Jul 03 11:45:59 2023 +0100 @@ -1819,13 +1819,13 @@ qed moreover { assume R: ?rhs - then have fgim: "f ` topspace X \ topspace X'" "g ` topspace Y \ topspace Y'" + then have fgim: "f \ topspace X \ topspace X'" "g \ topspace Y \ topspace Y'" and cm: "closed_map X X' f" "closed_map Y Y' g" by (auto simp: proper_map_def closed_map_imp_subset_topspace) have "closed_map (prod_topology X Y) (prod_topology X' Y') h" unfolding closed_map_fibre_neighbourhood imp_conjL proof (intro conjI strip) - show "h ` topspace (prod_topology X Y) \ topspace (prod_topology X' Y')" + show "h \ topspace (prod_topology X Y) \ topspace (prod_topology X' Y')" unfolding h_def using fgim by auto fix W w assume W: "openin (prod_topology X Y) W" @@ -1960,7 +1960,7 @@ "\perfect_map X Z (g \ f); f ` topspace X = topspace Y; continuous_map X Y f; continuous_map Y Z g; inj_on g (topspace Y)\ \ perfect_map X Y f" - by (meson continuous_map_image_subset_topspace perfect_map_def proper_map_from_composition_right_inj) + by (meson continuous_map_openin_preimage_eq perfect_map_def proper_map_from_composition_right_inj) subsection \Regular spaces\ @@ -2285,7 +2285,7 @@ fix C assume "closedin Z C" then have "C \ topspace Z" by (simp add: closedin_subset) - have "f ` topspace Z \ topspace X" "g ` topspace Z \ topspace Y" + have "f \ topspace Z \ topspace X" "g \ topspace Z \ topspace Y" by (simp_all add: assms closed_map_imp_subset_topspace) show "closedin (prod_topology X Y) ((\x. (f x, g x)) ` C)" unfolding closedin_def topspace_prod_topology @@ -2293,7 +2293,7 @@ have "closedin Y (g ` C)" using \closedin Z C\ assms(3) closed_map_def by blast with assms show "(\x. (f x, g x)) ` C \ topspace X \ topspace Y" - using \C \ topspace Z\ \f ` topspace Z \ topspace X\ continuous_map_closedin subsetD by fastforce + by (smt (verit) SigmaI \closedin Z C\ closed_map_def closedin_subset image_subset_iff) have *: "\T. openin (prod_topology X Y) T \ (y1,y2) \ T \ T \ topspace X \ topspace Y - (\x. (f x, g x)) ` C" if "(y1,y2) \ (\x. (f x, g x)) ` C" and y1: "y1 \ topspace X" and y2: "y2 \ topspace Y" for y1 y2 @@ -5157,7 +5157,7 @@ qed lemma closed_map_into_k_space: - assumes "k_space Y" and fim: "f ` (topspace X) \ topspace Y" + assumes "k_space Y" and fim: "f \ (topspace X) \ topspace Y" and f: "\K. compactin Y K \ closed_map(subtopology X {x \ topspace X. f x \ K}) (subtopology Y K) f" shows "closed_map X Y f" @@ -5176,13 +5176,13 @@ qed then show "closedin Y (f ` C)" using \k_space Y\ unfolding k_space - by (meson \closedin X C\ closedin_subset dual_order.trans fim image_mono) + by (meson \closedin X C\ closedin_subset order.trans fim funcset_image subset_image_iff) qed text \Essentially the same proof\ lemma open_map_into_k_space: - assumes "k_space Y" and fim: "f ` (topspace X) \ topspace Y" + assumes "k_space Y" and fim: "f \ (topspace X) \ topspace Y" and f: "\K. compactin Y K \ open_map (subtopology X {x \ topspace X. f x \ K}) (subtopology Y K) f" shows "open_map X Y f" @@ -5201,7 +5201,7 @@ qed then show "openin Y (f ` C)" using \k_space Y\ unfolding k_space_open - by (meson \openin X C\ openin_subset dual_order.trans fim image_mono) + by (meson \openin X C\ openin_subset order.trans fim funcset_image subset_image_iff) qed lemma quotient_map_into_k_space: @@ -5255,7 +5255,7 @@ lemma open_map_into_k_space_eq: assumes "k_space Y" shows "open_map X Y f \ - f ` (topspace X) \ topspace Y \ + f \ (topspace X) \ topspace Y \ (\k. compactin Y k \ open_map (subtopology X {x \ topspace X. f x \ k}) (subtopology Y k) f)" (is "?lhs=?rhs") @@ -5269,7 +5269,7 @@ lemma closed_map_into_k_space_eq: assumes "k_space Y" shows "closed_map X Y f \ - f ` (topspace X) \ topspace Y \ + f \ (topspace X) \ topspace Y \ (\k. compactin Y k \ closed_map (subtopology X {x \ topspace X. f x \ k}) (subtopology Y k) f)" (is "?lhs \ ?rhs") @@ -5281,7 +5281,7 @@ qed lemma proper_map_into_k_space: - assumes "k_space Y" and fim: "f ` (topspace X) \ topspace Y" + assumes "k_space Y" and fim: "f \ (topspace X) \ topspace Y" and f: "\K. compactin Y K \ proper_map (subtopology X {x \ topspace X. f x \ K}) (subtopology Y K) f" @@ -5297,7 +5297,7 @@ lemma proper_map_into_k_space_eq: assumes "k_space Y" shows "proper_map X Y f \ - f ` (topspace X) \ topspace Y \ + f \ (topspace X) \ topspace Y \ (\K. compactin Y K \ proper_map (subtopology X {x \ topspace X. f x \ K}) (subtopology Y K) f)" (is "?lhs \ ?rhs") @@ -5305,11 +5305,11 @@ show "?lhs \ ?rhs" by (simp add: proper_map_imp_subset_topspace proper_map_restriction) show "?rhs \ ?lhs" - by (simp add: assms proper_map_into_k_space) + by (simp add: assms funcset_image proper_map_into_k_space) qed lemma compact_imp_proper_map: - assumes "k_space Y" "kc_space Y" and fim: "f ` (topspace X) \ topspace Y" + assumes "k_space Y" "kc_space Y" and fim: "f \ (topspace X) \ topspace Y" and f: "continuous_map X Y f \ kc_space X" and comp: "\K. compactin Y K \ compactin X {x \ topspace X. f x \ K}" shows "proper_map X Y f" @@ -5325,12 +5325,12 @@ assumes "k_space Y" "kc_space Y" and f: "continuous_map X Y f \ kc_space X" shows "proper_map X Y f \ - f ` (topspace X) \ topspace Y \ + f \ (topspace X) \ topspace Y \ (\K. compactin Y K \ compactin X {x \ topspace X. f x \ K})" (is "?lhs \ ?rhs") proof show "?lhs \ ?rhs" - by (simp add: proper_map_alt proper_map_imp_subset_topspace) + using \k_space Y\ compactin_proper_map_preimage proper_map_into_k_space_eq by blast qed (use assms compact_imp_proper_map in auto) lemma compact_imp_perfect_map: @@ -5338,7 +5338,7 @@ and "continuous_map X Y f" and "\K. compactin Y K \ compactin X {x \ topspace X. f x \ K}" shows "perfect_map X Y f" - by (simp add: assms compact_imp_proper_map perfect_map_def) + by (simp add: assms compact_imp_proper_map perfect_map_def flip: image_subset_iff_funcset) end