diff -r dfccf6c06201 -r 759b5299a9f2 src/HOL/Data_Structures/RBT_Map.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Data_Structures/RBT_Map.thy Tue Sep 22 08:38:25 2015 +0200 @@ -0,0 +1,79 @@ +(* Author: Tobias Nipkow *) + +section \Red-Black Tree Implementation of Maps\ + +theory RBT_Map +imports + RBT_Set + Map_by_Ordered +begin + +fun lookup :: "('a::linorder * 'b) rbt \ 'a \ 'b option" where +"lookup Leaf x = None" | +"lookup (Node _ l (a,b) r) x = + (if x < a then lookup l x else + if x > a then lookup r x else Some b)" + +fun update :: "'a::linorder \ 'b \ ('a*'b) rbt \ ('a*'b) rbt" where +"update x y Leaf = R Leaf (x,y) Leaf" | +"update x y (B l (a,b) r) = + (if x < a then bal (update x y l) (a,b) r else + if x > a then bal l (a,b) (update x y r) + else B l (x,y) r)" | +"update x y (R l (a,b) r) = + (if x < a then R (update x y l) (a,b) r else + if x > a then R l (a,b) (update x y r) + else R l (x,y) r)" + +fun delete :: "'a::linorder \ ('a*'b)rbt \ ('a*'b)rbt" +and deleteL :: "'a::linorder \ ('a*'b)rbt \ 'a*'b \ ('a*'b)rbt \ ('a*'b)rbt" +and deleteR :: "'a::linorder \ ('a*'b)rbt \ 'a*'b \ ('a*'b)rbt \ ('a*'b)rbt" +where +"delete x Leaf = Leaf" | +"delete x (Node c t1 (a,b) t2) = + (if x < a then deleteL x t1 (a,b) t2 else + if x > a then deleteR x t1 (a,b) t2 else combine t1 t2)" | +"deleteL x (B t1 a t2) b t3 = balL (delete x (B t1 a t2)) b t3" | +"deleteL x t1 a t2 = R (delete x t1) a t2" | +"deleteR x t1 a (B t2 b t3) = balR t1 a (delete x (B t2 b t3))" | +"deleteR x t1 a t2 = R t1 a (delete x t2)" + + +subsection "Functional Correctness Proofs" + +lemma lookup_eq: + "sorted1(inorder t) \ lookup t x = map_of (inorder t) x" +by(induction t) + (auto simp: sorted_lems map_of_append map_of_sorteds split: option.split) + + +lemma inorder_update: + "sorted1(inorder t) \ inorder(update x y t) = upd_list x y (inorder t)" +by(induction x y t rule: update.induct) + (auto simp: upd_list_simps inorder_bal) + + +lemma inorder_delete: + "sorted1(inorder t1) \ inorder(delete x t1) = del_list x (inorder t1)" and + "sorted1(inorder t1) \ inorder(deleteL x t1 a t2) = + del_list x (inorder t1) @ a # inorder t2" and + "sorted1(inorder t2) \ inorder(deleteR x t1 a t2) = + inorder t1 @ a # del_list x (inorder t2)" +by(induction x t1 and x t1 a t2 and x t1 a t2 rule: delete_deleteL_deleteR.induct) + (auto simp: del_list_sorted sorted_lems inorder_combine inorder_balL inorder_balR) + + +interpretation Map_by_Ordered +where empty = Leaf and lookup = lookup and update = update and delete = delete +and inorder = inorder and wf = "\_. True" +proof (standard, goal_cases) + case 1 show ?case by simp +next + case 2 thus ?case by(simp add: lookup_eq) +next + case 3 thus ?case by(simp add: inorder_update) +next + case 4 thus ?case by(simp add: inorder_delete) +qed (rule TrueI)+ + +end