diff -r 349c639e593c -r 7643b005b29a src/HOL/Probability/Information.thy --- a/src/HOL/Probability/Information.thy Sat Apr 14 20:19:52 2018 +0100 +++ b/src/HOL/Probability/Information.thy Sun Apr 15 13:57:00 2018 +0100 @@ -834,9 +834,14 @@ - log b (\ x. indicator {x \ space MX. Px x \ 0} x \MX)" using Px Px_nn fin by (auto simp: measure_def) also have "- log b (\ x. indicator {x \ space MX. Px x \ 0} x \MX) = - log b (\ x. 1 / Px x \distr M MX X)" - unfolding distributed_distr_eq_density[OF X] using Px Px_nn - apply (intro arg_cong[where f="log b"] arg_cong[where f=uminus]) - by (subst integral_density) (auto simp del: integral_indicator intro!: Bochner_Integration.integral_cong) + proof - + have "integral\<^sup>L MX (indicator {x \ space MX. Px x \ 0}) = LINT x|MX. Px x *\<^sub>R (1 / Px x)" + by (rule Bochner_Integration.integral_cong) auto + also have "... = LINT x|density MX (\x. ennreal (Px x)). 1 / Px x" + by (rule integral_density [symmetric]) (use Px Px_nn in auto) + finally show ?thesis + unfolding distributed_distr_eq_density[OF X] by simp + qed also have "\ \ (\ x. - log b (1 / Px x) \distr M MX X)" proof (rule X.jensens_inequality[of "\x. 1 / Px x" "{0<..}" 0 1 "\x. - log b x"]) show "AE x in distr M MX X. 1 / Px x \ {0<..}"