diff -r b14c4cb37d99 -r 76a1c0ea6777 src/HOL/Fun_Def.thy --- a/src/HOL/Fun_Def.thy Mon Feb 12 09:30:22 2024 +0000 +++ b/src/HOL/Fun_Def.thy Tue Feb 13 17:18:50 2024 +0000 @@ -304,7 +304,7 @@ done -subsection \Yet another induction principle on the natural numbers\ +subsection \Yet more induction principles on the natural numbers\ lemma nat_descend_induct [case_names base descend]: fixes P :: "nat \ bool" @@ -313,6 +313,13 @@ shows "P m" using assms by induction_schema (force intro!: wf_measure [of "\k. Suc n - k"])+ +lemma induct_nat_012[case_names 0 1 ge2]: + "P 0 \ P (Suc 0) \ (\n. P n \ P (Suc n) \ P (Suc (Suc n))) \ P n" +proof (induction_schema, pat_completeness) + show "wf (Wellfounded.measure id)" + by simp +qed auto + subsection \Tool setup\