diff -r 12f6f18e7afc -r 76a6ba67bd15 src/ZF/Nat.thy --- a/src/ZF/Nat.thy Tue Aug 19 13:53:58 2003 +0200 +++ b/src/ZF/Nat.thy Tue Aug 19 13:54:20 2003 +0200 @@ -217,11 +217,9 @@ by (simp add: quasinat_def nat_case_def) lemma nat_cases_disj: "k=0 | (\y. k = succ(y)) | ~ quasinat(k)" -txt{*The @{text case_tac} method is not yet available.*} -apply (rule_tac P = "k=0" in case_split_thm, simp) -apply (rule_tac P = "\m. k = succ(m)" in case_split_thm, simp) -apply simp -apply (simp add: quasinat_def) +apply (case_tac "k=0", simp) +apply (case_tac "\m. k = succ(m)") +apply (simp_all add: quasinat_def) done lemma nat_cases: