diff -r 1edc2cc25f19 -r 76d68444cd59 src/HOL/Metis_Examples/Trans_Closure.thy --- a/src/HOL/Metis_Examples/Trans_Closure.thy Thu Feb 14 22:49:22 2013 +0100 +++ b/src/HOL/Metis_Examples/Trans_Closure.thy Thu Feb 14 22:49:22 2013 +0100 @@ -44,7 +44,7 @@ lemma "\f c = Intg x; \y. f b = Intg y \ y \ x; (a, b) \ R\<^sup>*; (b,c) \ R\<^sup>*\ \ \c. (b, c) \ R \ (a, c) \ R\<^sup>*" -(* sledgehammer [isar_proofs, isar_shrink = 2] *) +(* sledgehammer [isar_proofs, isar_compress = 2] *) proof - assume A1: "f c = Intg x" assume A2: "\y. f b = Intg y \ y \ x"