diff -r c7da302a0346 -r 779fc4fcbf8b src/HOL/MetisExamples/Abstraction.thy --- a/src/HOL/MetisExamples/Abstraction.thy Tue Sep 18 16:08:08 2007 +0200 +++ b/src/HOL/MetisExamples/Abstraction.thy Tue Sep 18 17:53:37 2007 +0200 @@ -93,8 +93,7 @@ lemma "(cl,f) \ CLF ==> CLF = (SIGMA cl: CL.{f. f \ pset cl}) ==> f \ pset cl"proof (neg_clausify) assume 0: "(cl, f) \ CLF" assume 1: "CLF = Sigma CL llabs_subgoal_1" -assume 2: "\cl. llabs_subgoal_1 cl = - Collect (llabs_List_Xlists_def_1_ (pset cl))" +assume 2: "\cl. llabs_subgoal_1 cl = Collect (llabs_Predicate_Xsup_Un_eq_1_ (pset cl))" assume 3: "f \ pset cl" show "False" by (metis 0 1 SigmaD2 3 2 Collect_mem_eq) @@ -109,15 +108,17 @@ lemma "(cl,f) \ (SIGMA cl::'a set : CL. {f. f \ pset cl \ pset cl}) ==> - f \ pset cl \ pset cl" + f \ pset cl \ pset cl" proof (neg_clausify) assume 0: "(cl, f) \ Sigma CL llabs_subgoal_1" assume 1: "\cl. llabs_subgoal_1 cl = Collect - (llabs_List_Xlists_def_1_ (Pi (pset cl) (COMBK (pset cl))))" + (llabs_Predicate_Xsup_Un_eq_1_ (Pi (pset cl) (COMBK (pset cl))))" assume 2: "f \ Pi (pset cl) (COMBK (pset cl))" +have 3: "\ llabs_Predicate_Xsup_Un_eq_1_ (Pi (pset cl) (COMBK (pset cl))) f" + by (metis Collect_mem_eq 2) show "False" - by (metis Collect_mem_eq 1 2 SigmaD2 0) + by (metis acc_def 0 Collect_mem_eq SigmaD2 3 1 Collect_mem_eq) qed finish_clausify (*Hack to prevent the "Additional hypotheses" error*)