diff -r 933eb9e6a1cc -r 77b453bd616f src/HOL/Real_Vector_Spaces.thy --- a/src/HOL/Real_Vector_Spaces.thy Tue Nov 03 11:20:21 2015 +0100 +++ b/src/HOL/Real_Vector_Spaces.thy Tue Nov 10 14:18:41 2015 +0000 @@ -341,12 +341,6 @@ lemma of_real_of_int_eq [simp]: "of_real (of_int z) = of_int z" by (cases z rule: int_diff_cases, simp) -lemma of_real_real_of_nat_eq [simp]: "of_real (real n) = of_nat n" - by (simp add: real_of_nat_def) - -lemma of_real_real_of_int_eq [simp]: "of_real (real z) = of_int z" - by (simp add: real_of_int_def) - lemma of_real_numeral [simp]: "of_real (numeral w) = numeral w" using of_real_of_int_eq [of "numeral w"] by simp @@ -997,7 +991,7 @@ also have "\ \ (\i = m * norm (z - w)" - by (simp add: real_of_nat_def) + by simp finally show ?thesis . qed @@ -1291,7 +1285,7 @@ lemma dist_diff [simp]: "dist a (a - b) = norm b" "dist (a - b) a = norm b" by (simp_all add: dist_norm) - + lemma dist_of_int: "dist (of_int m) (of_int n :: 'a :: real_normed_algebra_1) = of_int \m - n\" proof - have "dist (of_int m) (of_int n :: 'a) = dist (of_int m :: 'a) (of_int m - (of_int (m - n)))" @@ -1300,10 +1294,10 @@ finally show ?thesis . qed -lemma dist_of_nat: +lemma dist_of_nat: "dist (of_nat m) (of_nat n :: 'a :: real_normed_algebra_1) = of_int \int m - int n\" by (subst (1 2) of_int_of_nat_eq [symmetric]) (rule dist_of_int) - + subsection \Bounded Linear and Bilinear Operators\ locale linear = additive f for f :: "'a::real_vector \ 'b::real_vector" + @@ -1571,7 +1565,7 @@ assumes "linear f" "bij f" shows "linear (inv f)" using assms unfolding linear_def linear_axioms_def additive_def by (auto simp: bij_is_surj bij_is_inj surj_f_inv_f intro!: Hilbert_Choice.inv_f_eq) - + instance real_normed_algebra_1 \ perfect_space proof fix x::'a @@ -1737,7 +1731,7 @@ qed next assume "Cauchy f" - show "\e>0. \M. \m\M. \n>m. dist (f m) (f n) < e" + show "\e>0. \M. \m\M. \n>m. dist (f m) (f n) < e" proof (intro allI impI) fix e :: real assume e: "e > 0" with `Cauchy f` obtain M where "\m n. m \ M \ n \ M \ dist (f m) (f n) < e" @@ -1959,8 +1953,7 @@ using ex_le_of_nat[of x] .. note monoD[OF mono this] also have "f (real_of_nat n) \ y" - by (rule LIMSEQ_le_const[OF limseq]) - (auto intro: exI[of _ n] monoD[OF mono] simp: real_eq_of_nat[symmetric]) + by (rule LIMSEQ_le_const[OF limseq]) (auto intro: exI[of _ n] monoD[OF mono]) finally have "f x \ y" . } note le = this have "eventually (\x. real N \ x) at_top"