diff -r 778f0897e7e5 -r 78dfc5904eea doc-src/TutorialI/Rules/rules.tex --- a/doc-src/TutorialI/Rules/rules.tex Fri Jan 05 15:39:34 2001 +0100 +++ b/doc-src/TutorialI/Rules/rules.tex Fri Jan 05 18:16:01 2001 +0100 @@ -1,3 +1,4 @@ +% $Id$ \chapter{The Rules of the Game} \label{chap:rules} @@ -1314,10 +1315,8 @@ \begin{isabelle} \isacommand{lemma}\ gcd_greatest\ [rule_format]:\isanewline -\ \ \ \ \ \ \ "(k\ dvd\ -m)\ \isasymlongrightarrow\ (k\ dvd\ -n)\ \isasymlongrightarrow\ k\ dvd\ -gcd(m,n)"\isanewline +\ \ \ \ \ \ \ "k\ dvd\ m\ \isasymlongrightarrow\ k\ dvd\ n\ \isasymlongrightarrow\ +k\ dvd\ gcd(m,n)"\isanewline \isacommand{apply}\ (induct_tac\ m\ n\ rule:\ gcd.induct)\isanewline \isacommand{apply}\ (case_tac\ "n=0")\isanewline @@ -1338,7 +1337,8 @@ of \isa{blast}, and it is worth doing for sound logical reasons. \begin{isabelle} \isacommand{theorem}\ gcd_greatest_iff\ [iff]:\isanewline -\ \ \ \ \ \ \ \ \ "k\ dvd\ gcd(m,n)\ =\ (k\ dvd\ m\ \isasymand\ k\ dvd\ n)"\isanewline +\ \ \ \ \ \ \ \ \ "(k\ dvd\ gcd(m,n))\ =\ (k\ dvd\ m\ \isasymand\ k\ dvd\ +n)"\isanewline \isacommand{apply}\ (blast\ intro!:\ gcd_greatest\ intro:\ dvd_trans)\isanewline \isacommand{done} \end{isabelle}