diff -r 237190475d79 -r 7957d26c3334 src/HOL/Algebra/poly/LongDiv.thy --- a/src/HOL/Algebra/poly/LongDiv.thy Mon Mar 25 19:53:44 2013 +0100 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,257 +0,0 @@ -(* Author: Clemens Ballarin, started 23 June 1999 - -Experimental theory: long division of polynomials. -*) - -theory LongDiv -imports PolyHomo -begin - -definition - lcoeff :: "'a::ring up => 'a" where - "lcoeff p = coeff p (deg p)" - -definition - eucl_size :: "'a::zero up => nat" where - "eucl_size p = (if p = 0 then 0 else deg p + 1)" - -lemma SUM_shrink_below_lemma: - "!! f::(nat=>'a::ring). (ALL i. i < m --> f i = 0) --> - setsum (%i. f (i+m)) {..d} = setsum f {..m+d}" - apply (induct_tac d) - apply (induct_tac m) - apply simp - apply force - apply (simp add: add_commute [of m]) - done - -lemma SUM_extend_below: - "!! f::(nat=>'a::ring). - [| m <= n; !!i. i < m ==> f i = 0; P (setsum (%i. f (i+m)) {..n-m}) |] - ==> P (setsum f {..n})" - by (simp add: SUM_shrink_below_lemma add_diff_inverse leD) - -lemma up_repr2D: - "!! p::'a::ring up. - [| deg p <= n; P (setsum (%i. monom (coeff p i) i) {..n}) |] - ==> P p" - by (simp add: up_repr_le) - - -(* Start of LongDiv *) - -lemma deg_lcoeff_cancel: - "!!p::('a::ring up). - [| deg p <= deg r; deg q <= deg r; - coeff p (deg r) = - (coeff q (deg r)); deg r ~= 0 |] ==> - deg (p + q) < deg r" - apply (rule le_less_trans [of _ "deg r - 1"]) - prefer 2 - apply arith - apply (rule deg_aboveI) - apply (case_tac "deg r = m") - apply clarify - apply simp - (* case "deg q ~= m" *) - apply (subgoal_tac "deg p < m & deg q < m") - apply (simp (no_asm_simp) add: deg_aboveD) - apply arith - done - -lemma deg_lcoeff_cancel2: - "!!p::('a::ring up). - [| deg p <= deg r; deg q <= deg r; - p ~= -q; coeff p (deg r) = - (coeff q (deg r)) |] ==> - deg (p + q) < deg r" - apply (rule deg_lcoeff_cancel) - apply assumption+ - apply (rule classical) - apply clarify - apply (erule notE) - apply (rule_tac p = p in up_repr2D, assumption) - apply (rule_tac p = q in up_repr2D, assumption) - apply (rotate_tac -1) - apply (simp add: smult_l_minus) - done - -lemma long_div_eucl_size: - "!!g::('a::ring up). g ~= 0 ==> - Ex (% (q, r, k). - (lcoeff g)^k *s f = q * g + r & (eucl_size r < eucl_size g))" - apply (rule_tac P = "%f. Ex (% (q, r, k) . (lcoeff g) ^k *s f = q * g + r & (eucl_size r < eucl_size g))" in wf_induct) - (* TO DO: replace by measure_induct *) - apply (rule_tac f = eucl_size in wf_measure) - apply (case_tac "eucl_size x < eucl_size g") - apply (rule_tac x = "(0, x, 0)" in exI) - apply (simp (no_asm_simp)) - (* case "eucl_size x >= eucl_size g" *) - apply (drule_tac x = "lcoeff g *s x - (monom (lcoeff x) (deg x - deg g)) * g" in spec) - apply (erule impE) - apply (simp (no_asm_use) add: inv_image_def measure_def lcoeff_def) - apply (case_tac "x = 0") - apply (rotate_tac -1) - apply (simp add: eucl_size_def) - (* case "x ~= 0 *) - apply (rotate_tac -1) - apply (simp add: eucl_size_def) - apply (rule impI) - apply (rule deg_lcoeff_cancel2) - (* replace by linear arithmetic??? *) - apply (rule_tac [2] le_trans) - apply (rule_tac [2] deg_smult_ring) - prefer 2 - apply simp - apply (simp (no_asm)) - apply (rule le_trans) - apply (rule deg_mult_ring) - apply (rule le_trans) -(**) - apply (rule add_le_mono) - apply (rule le_refl) - (* term order forces to use this instead of add_le_mono1 *) - apply (rule deg_monom_ring) - apply (simp (no_asm_simp)) - apply force - apply (simp (no_asm)) -(**) - (* This change is probably caused by application of commutativity *) - apply (rule_tac m = "deg g" and n = "deg x" in SUM_extend) - apply (simp (no_asm)) - apply (simp (no_asm_simp)) - apply arith - apply (rule_tac m = "deg g" and n = "deg g" in SUM_extend_below) - apply (rule le_refl) - apply (simp (no_asm_simp)) - apply arith - apply (simp (no_asm)) -(**) -(* end of subproof deg f1 < deg f *) - apply (erule exE) - apply (rule_tac x = "((% (q,r,k) . (monom (lcoeff g ^ k * lcoeff x) (deg x - deg g) + q)) xa, (% (q,r,k) . r) xa, (% (q,r,k) . Suc k) xa) " in exI) - apply clarify - apply (drule sym) - using [[simproc del: ring]] - apply (simp (no_asm_use) add: l_distr a_assoc) - apply (simp (no_asm_simp)) - apply (simp (no_asm_use) add: minus_def smult_r_distr smult_r_minus - monom_mult_smult smult_assoc2) - using [[simproc ring]] - apply (simp add: smult_assoc1 [symmetric]) - done - -lemma long_div_ring_aux: - "(g :: 'a::ring up) ~= 0 ==> - Ex (\(q, r, k). lcoeff g ^ k *s f = q * g + r \ - (if r = 0 then 0 else deg r + 1) < (if g = 0 then 0 else deg g + 1))" -proof - - note [[simproc del: ring]] - assume "g ~= 0" - then show ?thesis - by (rule long_div_eucl_size [simplified eucl_size_def]) -qed - -lemma long_div_ring: - "!!g::('a::ring up). g ~= 0 ==> - Ex (% (q, r, k). - (lcoeff g)^k *s f = q * g + r & (r = 0 | deg r < deg g))" - apply (frule_tac f = f in long_div_ring_aux) - using [[simproc del: ring]] - apply auto - apply (case_tac "aa = 0") - apply blast - (* case "aa ~= 0 *) - apply (rotate_tac -1) - apply auto - done - -(* Next one fails *) -lemma long_div_unit: - "!!g::('a::ring up). [| g ~= 0; (lcoeff g) dvd 1 |] ==> - Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))" - apply (frule_tac f = "f" in long_div_ring) - apply (erule exE) - apply (rule_tac x = "((% (q,r,k) . (inverse (lcoeff g ^k) *s q)) x, (% (q,r,k) . inverse (lcoeff g ^k) *s r) x) " in exI) - apply clarify - apply (rule conjI) - apply (drule sym) - using [[simproc del: ring]] - apply (simp (no_asm_simp) add: smult_r_distr [symmetric] smult_assoc2) - using [[simproc ring]] - apply (simp (no_asm_simp) add: l_inverse_ring unit_power smult_assoc1 [symmetric]) - (* degree property *) - apply (erule disjE) - apply (simp (no_asm_simp)) - apply (rule disjI2) - apply (rule le_less_trans) - apply (rule deg_smult_ring) - apply (simp (no_asm_simp)) - done - -lemma long_div_theorem: - "!!g::('a::field up). g ~= 0 ==> - Ex (% (q, r). f = q * g + r & (r = 0 | deg r < deg g))" - apply (rule long_div_unit) - apply assumption - apply (simp (no_asm_simp) add: lcoeff_def lcoeff_nonzero field_ax) - done - -lemma uminus_zero: "- (0::'a::ring) = 0" - by simp - -lemma diff_zero_imp_eq: "!!a::'a::ring. a - b = 0 ==> a = b" - apply (rule_tac s = "a - (a - b) " in trans) - apply simp - apply (simp (no_asm)) - done - -lemma eq_imp_diff_zero: "!!a::'a::ring. a = b ==> a + (-b) = 0" - by simp - -lemma long_div_quo_unique: - "!!g::('a::field up). [| g ~= 0; - f = q1 * g + r1; (r1 = 0 | deg r1 < deg g); - f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> q1 = q2" - apply (subgoal_tac "(q1 - q2) * g = r2 - r1") (* 1 *) - apply (erule_tac V = "f = ?x" in thin_rl) - apply (erule_tac V = "f = ?x" in thin_rl) - apply (rule diff_zero_imp_eq) - apply (rule classical) - apply (erule disjE) - (* r1 = 0 *) - apply (erule disjE) - (* r2 = 0 *) - using [[simproc del: ring]] - apply (simp add: integral_iff minus_def l_zero uminus_zero) - (* r2 ~= 0 *) - apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong) - apply (simp add: minus_def l_zero uminus_zero) - (* r1 ~=0 *) - apply (erule disjE) - (* r2 = 0 *) - apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong) - apply (simp add: minus_def l_zero uminus_zero) - (* r2 ~= 0 *) - apply (drule_tac f = "deg" and y = "r2 - r1" in arg_cong) - apply (simp add: minus_def) - apply (drule order_eq_refl [THEN add_leD2]) - apply (drule leD) - apply (erule notE, rule deg_add [THEN le_less_trans]) - apply (simp (no_asm_simp)) - (* proof of 1 *) - apply (rule diff_zero_imp_eq) - apply hypsubst - apply (drule_tac a = "?x+?y" in eq_imp_diff_zero) - using [[simproc ring]] - apply simp - done - -lemma long_div_rem_unique: - "!!g::('a::field up). [| g ~= 0; - f = q1 * g + r1; (r1 = 0 | deg r1 < deg g); - f = q2 * g + r2; (r2 = 0 | deg r2 < deg g) |] ==> r1 = r2" - apply (subgoal_tac "q1 = q2") - apply (metis a_comm a_lcancel m_comm) - apply (metis a_comm l_zero long_div_quo_unique m_comm conc) - done - -end