diff -r 82f57315cade -r 7a92cbec7030 src/HOL/Analysis/Bochner_Integration.thy --- a/src/HOL/Analysis/Bochner_Integration.thy Sun Jan 20 17:15:49 2019 +0000 +++ b/src/HOL/Analysis/Bochner_Integration.thy Mon Jan 21 14:44:23 2019 +0000 @@ -2127,8 +2127,10 @@ proof - have "r0 n \ n" using \strict_mono r0\ by (simp add: seq_suble) have "(1/2::real)^(r0 n) \ (1/2)^n" by (rule power_decreasing[OF \r0 n \ n\], auto) - then have "(\x. norm(u (r0 (Suc n)) x) \M) < (1/2)^n" using r0(2) less_le_trans by auto - then have "(\x. norm(u (r n) x) \M) < (1/2)^n" unfolding r_def by auto + then have "(\x. norm(u (r0 (Suc n)) x) \M) < (1/2)^n" + using r0(2) less_le_trans by blast + then have "(\x. norm(u (r n) x) \M) < (1/2)^n" + unfolding r_def by auto moreover have "(\\<^sup>+x. norm(u (r n) x) \M) = (\x. norm(u (r n) x) \M)" by (rule nn_integral_eq_integral, auto simp add: integrable_norm[OF assms(1)[of "r n"]]) ultimately show ?thesis by (auto intro: ennreal_lessI)