diff -r a6e26a248f03 -r 7ab2716dd93b src/HOL/Bali/Trans.thy --- a/src/HOL/Bali/Trans.thy Fri Apr 17 16:41:31 2009 +0200 +++ b/src/HOL/Bali/Trans.thy Mon Apr 20 09:32:07 2009 +0200 @@ -359,7 +359,7 @@ abbreviation stepn:: "[prog, term \ state,nat,term \ state] \ bool" ("_\_ \_ _"[61,82,82] 81) - where "G\p \n p' \ (p,p') \ {(x, y). step G x y}^n" + where "G\p \n p' \ (p,p') \ {(x, y). step G x y}^^n" abbreviation steptr:: "[prog,term \ state,term \ state] \ bool" ("_\_ \* _"[61,82,82] 81) @@ -370,25 +370,6 @@ Smallstep zu Bigstep, nur wenn nicht die Ausdrücke Callee, FinA ,\ *) -lemma rtrancl_imp_rel_pow: "p \ R^* \ \n. p \ R^n" -proof - - assume "p \ R\<^sup>*" - moreover obtain x y where p: "p = (x,y)" by (cases p) - ultimately have "(x,y) \ R\<^sup>*" by hypsubst - hence "\n. (x,y) \ R^n" - proof induct - fix a have "(a,a) \ R^0" by simp - thus "\n. (a,a) \ R ^ n" .. - next - fix a b c assume "\n. (a,b) \ R ^ n" - then obtain n where "(a,b) \ R^n" .. - moreover assume "(b,c) \ R" - ultimately have "(a,c) \ R^(Suc n)" by auto - thus "\n. (a,c) \ R^n" .. - qed - with p show ?thesis by hypsubst -qed - (* lemma imp_eval_trans: assumes eval: "G\s0 \t\\ (v,s1)"