diff -r d007dee0c372 -r 7d0e10a961a6 src/HOL/Int.thy --- a/src/HOL/Int.thy Wed Apr 01 11:34:21 2009 -0700 +++ b/src/HOL/Int.thy Wed Apr 01 22:29:27 2009 +0200 @@ -1382,8 +1382,6 @@ subsection {* @{term setsum} and @{term setprod} *} -text {*By Jeremy Avigad*} - lemma of_nat_setsum: "of_nat (setsum f A) = (\x\A. of_nat(f x))" apply (cases "finite A") apply (erule finite_induct, auto) @@ -1404,26 +1402,6 @@ apply (erule finite_induct, auto) done -lemma setprod_nonzero_nat: - "finite A ==> (\x \ A. f x \ (0::nat)) ==> setprod f A \ 0" - by (rule setprod_nonzero, auto) - -lemma setprod_pos_nat: - "finite S ==> (ALL x : S. f x > (0::nat)) ==> setprod f S > 0" -using setprod_nonzero_nat by simp - -lemma setprod_zero_eq_nat: - "finite A ==> (setprod f A = (0::nat)) = (\x \ A. f x = 0)" - by (rule setprod_zero_eq, auto) - -lemma setprod_nonzero_int: - "finite A ==> (\x \ A. f x \ (0::int)) ==> setprod f A \ 0" - by (rule setprod_nonzero, auto) - -lemma setprod_zero_eq_int: - "finite A ==> (setprod f A = (0::int)) = (\x \ A. f x = 0)" - by (rule setprod_zero_eq, auto) - lemmas int_setsum = of_nat_setsum [where 'a=int] lemmas int_setprod = of_nat_setprod [where 'a=int]