diff -r d10fafeb93c0 -r 7e4966eaf781 src/HOL/Analysis/Convex.thy --- a/src/HOL/Analysis/Convex.thy Thu Jan 31 09:30:15 2019 +0100 +++ b/src/HOL/Analysis/Convex.thy Thu Jan 31 13:08:59 2019 +0000 @@ -1492,8 +1492,8 @@ qed lemma affine_parallel_expl: "affine_parallel S T \ (\a. \x. x \ S \ a + x \ T)" - unfolding affine_parallel_def - using affine_parallel_expl_aux[of S _ T] by auto + by (auto simp add: affine_parallel_def) + (use affine_parallel_expl_aux [of S _ T] in blast) lemma affine_parallel_reflex: "affine_parallel S S" unfolding affine_parallel_def @@ -1508,7 +1508,7 @@ have [simp]: "(\x. x - a) = plus (- a)" by (simp add: fun_eq_iff) from B show ?thesis using translation_galois [of B a A] - unfolding affine_parallel_def by auto + unfolding affine_parallel_def by blast qed lemma affine_parallel_assoc: @@ -1629,7 +1629,7 @@ proof - have [simp]: "(\x. x - a) = plus (- a)" by (simp add: fun_eq_iff) have "affine ((\x. (-a)+x) ` S)" - using affine_translation assms by auto + using affine_translation assms by blast moreover have "0 \ ((\x. (-a)+x) ` S)" using assms exI[of "(\x. x\S \ -a+x = 0)" a] by auto ultimately show ?thesis using subspace_affine by auto @@ -1781,7 +1781,7 @@ using \cone S\ \c > 0\ unfolding cone_def image_def \c > 0\ by auto } - ultimately have "((*\<^sub>R) c) ` S = S" by auto + ultimately have "((*\<^sub>R) c) ` S = S" by blast } then have "0 \ S \ (\c. c > 0 \ ((*\<^sub>R) c) ` S = S)" using \cone S\ cone_contains_0[of S] assms by auto