diff -r c2524d123528 -r 7e6ffd8f51a9 src/HOL/NSA/HyperDef.thy --- a/src/HOL/NSA/HyperDef.thy Mon Apr 27 08:22:37 2009 +0200 +++ b/src/HOL/NSA/HyperDef.thy Mon Apr 27 10:11:44 2009 +0200 @@ -426,7 +426,7 @@ subsection{*Powers with Hypernatural Exponents*} -definition pow :: "['a::recpower star, nat star] \ 'a star" (infixr "pow" 80) where +definition pow :: "['a::power star, nat star] \ 'a star" (infixr "pow" 80) where hyperpow_def [transfer_unfold, code del]: "R pow N = ( *f2* op ^) R N" (* hypernatural powers of hyperreals *) @@ -459,7 +459,7 @@ by transfer (rule power_add) lemma hyperpow_one [simp]: - "\r. (r::'a::recpower star) pow (1::hypnat) = r" + "\r. (r::'a::monoid_mult star) pow (1::hypnat) = r" by transfer (rule power_one_right) lemma hyperpow_two: