diff -r f2f1f6860959 -r 7ed2cde6806d src/HOL/Int.thy --- a/src/HOL/Int.thy Thu Jun 25 15:01:41 2015 +0200 +++ b/src/HOL/Int.thy Thu Jun 25 15:01:42 2015 +0200 @@ -859,6 +859,23 @@ nat_mult_distrib_neg [symmetric] mult_less_0_iff) done +lemma int_in_range_abs [simp]: + "int n \ range abs" +proof (rule range_eqI) + show "int n = \int n\" + by simp +qed + +lemma range_abs_Nats [simp]: + "range abs = (\ :: int set)" +proof - + have "\k\ \ \" for k :: int + by (cases k) simp_all + moreover have "k \ range abs" if "k \ \" for k :: int + using that by induct simp + ultimately show ?thesis by blast +qed + lemma Suc_nat_eq_nat_zadd1: "(0::int) <= z ==> Suc (nat z) = nat (1 + z)" apply (rule sym) apply (simp add: nat_eq_iff)