diff -r 8bf41f8cf71d -r 7ef6505bde7f src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy --- a/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Wed Sep 14 10:55:07 2011 +0200 +++ b/src/HOL/Multivariate_Analysis/Extended_Real_Limits.thy Wed Sep 14 10:08:52 2011 -0400 @@ -653,7 +653,7 @@ unfolding less_SUP_iff by auto { fix y assume "y:S & 0 < dist y x & dist y x < d" hence "y:(S Int ball x d - {x})" unfolding ball_def by (auto simp add: dist_commute) - hence "f y:T" using d_def INF_leI[of y "S Int ball x d - {x}" f] `T={B<..}` by auto + hence "f y:T" using d_def INF_lower[of y "S Int ball x d - {x}" f] `T={B<..}` by auto } hence ?thesis apply(rule_tac x="d" in exI) using d_def by auto } ultimately show ?thesis by auto qed @@ -669,8 +669,8 @@ hence "y:S & 0 < dist y x & dist y x < d" unfolding ball_def apply (simp add: dist_commute) by (metis dist_eq_0_iff real_less_def zero_le_dist) hence "B <= f y" using d_def by auto - } hence "B <= INFI (S Int ball x d - {x}) f" apply (subst le_INFI) by auto - also have "...<=?l" apply (subst le_SUPI) using d_def by auto + } hence "B <= INFI (S Int ball x d - {x}) f" apply (subst INF_greatest) by auto + also have "...<=?l" apply (subst SUP_upper) using d_def by auto finally have "B<=?l" by auto } hence "z <= ?l" using ereal_le_ereal[of z "?l"] by auto } @@ -700,7 +700,7 @@ unfolding INF_less_iff by auto { fix y assume "y:S & 0 < dist y x & dist y x < d" hence "y:(S Int ball x d - {x})" unfolding ball_def by (auto simp add: dist_commute) - hence "f y:T" using d_def le_SUPI[of y "S Int ball x d - {x}" f] `T={.. ereal" assumes "\n. 0 \ f n" shows "(\n (\n. f n)" - unfolding suminf_ereal_eq_SUPR[OF assms] SUPR_def + unfolding suminf_ereal_eq_SUPR[OF assms] SUP_def by (auto intro: complete_lattice_class.Sup_upper image_eqI) lemma suminf_0_le: @@ -1291,7 +1291,7 @@ show ?thesis using assms apply (subst (1 2) suminf_ereal_eq_SUPR) unfolding * - apply (auto intro!: le_SUPI2) + apply (auto intro!: SUP_upper2) apply (subst SUP_commute) .. qed