diff -r 3f7d67927fe2 -r 7f5a4cd08209 src/HOL/WF.ML --- a/src/HOL/WF.ML Mon Feb 05 14:44:09 1996 +0100 +++ b/src/HOL/WF.ML Mon Feb 05 21:27:16 1996 +0100 @@ -1,9 +1,9 @@ -(* Title: HOL/WF.ML +(* Title: HOL/wf.ML ID: $Id$ - Author: Tobias Nipkow - Copyright 1992 University of Cambridge + Author: Tobias Nipkow, with minor changes by Konrad Slind + Copyright 1992 University of Cambridge/1995 TU Munich -For WF.thy. Well-founded Recursion +For WF.thy. Wellfoundedness, induction, and recursion *) open WF; @@ -48,7 +48,7 @@ by (REPEAT (resolve_tac prems 1)); qed "wf_anti_refl"; -(*transitive closure of a WF relation is WF!*) +(*transitive closure of a wf relation is wf! *) val [prem] = goal WF.thy "wf(r) ==> wf(r^+)"; by (rewtac wf_def); by (strip_tac 1); @@ -69,41 +69,32 @@ H_cong to expose the equality*) goalw WF.thy [cut_def] "(cut f r x = cut g r x) = (!y. (y,x):r --> f(y)=g(y))"; -by(simp_tac (!simpset addsimps [expand_fun_eq] - setloop (split_tac [expand_if])) 1); -qed "cut_cut_eq"; +by(simp_tac (HOL_ss addsimps [expand_fun_eq] + setloop (split_tac [expand_if])) 1); +qed "cuts_eq"; goalw WF.thy [cut_def] "!!x. (x,a):r ==> (cut f r a)(x) = f(x)"; -by(Asm_simp_tac 1); +by(asm_simp_tac HOL_ss 1); qed "cut_apply"; - (*** is_recfun ***) goalw WF.thy [is_recfun_def,cut_def] - "!!f. [| is_recfun r a H f; ~(b,a):r |] ==> f(b) = (@z.True)"; + "!!f. [| is_recfun r H a f; ~(b,a):r |] ==> f(b) = (@z.True)"; by (etac ssubst 1); -by(Asm_simp_tac 1); +by(asm_simp_tac HOL_ss 1); qed "is_recfun_undef"; -(*eresolve_tac transD solves (a,b):r using transitivity AT MOST ONCE - mp amd allE instantiate induction hypotheses*) -fun indhyp_tac hyps = - ares_tac (TrueI::hyps) ORELSE' - (cut_facts_tac hyps THEN' - DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' - eresolve_tac [transD, mp, allE])); - (*** NOTE! some simplifications need a different finish_tac!! ***) fun indhyp_tac hyps = resolve_tac (TrueI::refl::hyps) ORELSE' (cut_facts_tac hyps THEN' DEPTH_SOLVE_1 o (ares_tac [TrueI] ORELSE' eresolve_tac [transD, mp, allE])); -val wf_super_ss = !simpset setsolver indhyp_tac; +val wf_super_ss = HOL_ss setsolver indhyp_tac; val prems = goalw WF.thy [is_recfun_def,cut_def] - "[| wf(r); trans(r); is_recfun r a H f; is_recfun r b H g |] ==> \ + "[| wf(r); trans(r); is_recfun r H a f; is_recfun r H b g |] ==> \ \ (x,a):r --> (x,b):r --> f(x)=g(x)"; by (cut_facts_tac prems 1); by (etac wf_induct 1); @@ -115,7 +106,7 @@ val prems as [wfr,transr,recfa,recgb,_] = goalw WF.thy [cut_def] "[| wf(r); trans(r); \ -\ is_recfun r a H f; is_recfun r b H g; (b,a):r |] ==> \ +\ is_recfun r H a f; is_recfun r H b g; (b,a):r |] ==> \ \ cut f r b = g"; val gundef = recgb RS is_recfun_undef and fisg = recgb RS (recfa RS (transr RS (wfr RS is_recfun_equal))); @@ -128,70 +119,112 @@ (*** Main Existence Lemma -- Basic Properties of the_recfun ***) val prems = goalw WF.thy [the_recfun_def] - "is_recfun r a H f ==> is_recfun r a H (the_recfun r a H)"; -by (res_inst_tac [("P", "is_recfun r a H")] selectI 1); + "is_recfun r H a f ==> is_recfun r H a (the_recfun r H a)"; +by (res_inst_tac [("P", "is_recfun r H a")] selectI 1); by (resolve_tac prems 1); qed "is_the_recfun"; val prems = goal WF.thy - "[| wf(r); trans(r) |] ==> is_recfun r a H (the_recfun r a H)"; -by (cut_facts_tac prems 1); -by (wf_ind_tac "a" prems 1); -by (res_inst_tac [("f", "cut (%y. wftrec r y H) r a1")] is_the_recfun 1); -by (rewrite_goals_tac [is_recfun_def, wftrec_def]); -by (rtac (cut_cut_eq RS ssubst) 1); -(*Applying the substitution: must keep the quantified assumption!!*) -by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac, - etac (mp RS ssubst), atac]); -by (fold_tac [is_recfun_def]); -by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cut_cut_eq]) 1); + "[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)"; + by (cut_facts_tac prems 1); + by (wf_ind_tac "a" prems 1); + by (res_inst_tac [("f","cut (%y. H (the_recfun r H y) y) r a1")] + is_the_recfun 1); + by (rewrite_goals_tac [is_recfun_def]); + by (rtac (cuts_eq RS ssubst) 1); + by (rtac allI 1); + by (rtac impI 1); + by (res_inst_tac [("f1","H"),("x","y")](arg_cong RS fun_cong) 1); + by (subgoal_tac + "the_recfun r H y = cut(%x. H(cut(the_recfun r H y) r x) x) r y" 1); + by (etac allE 2); + by (dtac impE 2); + by (atac 2); + by (atac 3); + by (atac 2); + by (etac ssubst 1); + by (simp_tac (HOL_ss addsimps [cuts_eq]) 1); + by (rtac allI 1); + by (rtac impI 1); + by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); + by (res_inst_tac [("f1","H"),("x","ya")](arg_cong RS fun_cong) 1); + by (fold_tac [is_recfun_def]); + by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); qed "unfold_the_recfun"; - -(*Beware incompleteness of unification!*) -val prems = goal WF.thy - "[| wf(r); trans(r); (c,a):r; (c,b):r |] \ -\ ==> the_recfun r a H c = the_recfun r b H c"; -by (DEPTH_SOLVE (ares_tac (prems@[is_recfun_equal,unfold_the_recfun]) 1)); -qed "the_recfun_equal"; - -val prems = goal WF.thy - "[| wf(r); trans(r); (b,a):r |] \ -\ ==> cut (the_recfun r a H) r b = the_recfun r b H"; -by (REPEAT (ares_tac (prems@[is_recfun_cut,unfold_the_recfun]) 1)); -qed "the_recfun_cut"; - -(*** Unfolding wftrec ***) +val unwind1_the_recfun = rewrite_rule[is_recfun_def] unfold_the_recfun; -goalw WF.thy [wftrec_def] - "!!r. [| wf(r); trans(r) |] ==> \ -\ wftrec r a H = H a (cut (%x.wftrec r x H) r a)"; -by (EVERY1 [stac (rewrite_rule [is_recfun_def] unfold_the_recfun), - REPEAT o atac, rtac H_cong1]); -by (asm_simp_tac (!simpset addsimps [cut_cut_eq,the_recfun_cut]) 1); -qed "wftrec"; - -(*Unused but perhaps interesting*) +(*--------------Old proof----------------------------------------------------- val prems = goal WF.thy - "[| wf(r); trans(r); !!f x. H x (cut f r x) = H x f |] ==> \ -\ wftrec r a H = H a (%x.wftrec r x H)"; -by (rtac (wftrec RS trans) 1); -by (REPEAT (resolve_tac prems 1)); -qed "wftrec2"; + "[| wf(r); trans(r) |] ==> is_recfun r H a (the_recfun r H a)"; +by (cut_facts_tac prems 1); +by (wf_ind_tac "a" prems 1); +by (res_inst_tac [("f", "cut (%y. wftrec r H y) r a1")] is_the_recfun 1); +by (rewrite_goals_tac [is_recfun_def, wftrec_def]); +by (rtac (cuts_eq RS ssubst) 1); +(*Applying the substitution: must keep the quantified assumption!!*) +by (EVERY1 [strip_tac, rtac H_cong1, rtac allE, atac, + etac (mp RS ssubst), atac]); +by (fold_tac [is_recfun_def]); +by (asm_simp_tac (wf_super_ss addsimps[cut_apply,is_recfun_cut,cuts_eq]) 1); +qed "unfold_the_recfun"; +---------------------------------------------------------------------------*) (** Removal of the premise trans(r) **) +val th = rewrite_rule[is_recfun_def] + (trans_trancl RSN (2,(wf_trancl RS unfold_the_recfun))); goalw WF.thy [wfrec_def] - "!!r. wf(r) ==> wfrec r a H = H a (cut (%x.wfrec r x H) r a)"; + "!!r. wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; +by (rtac H_cong 1); +by (rtac refl 2); +by (simp_tac (HOL_ss addsimps [cuts_eq]) 1); +by (rtac allI 1); +by (rtac impI 1); +by (simp_tac(HOL_ss addsimps [wfrec_def]) 1); +by (res_inst_tac [("a1","a")] (th RS ssubst) 1); +by (atac 1); +by (forward_tac[wf_trancl] 1); +by (forward_tac[r_into_trancl] 1); +by (asm_simp_tac (HOL_ss addsimps [cut_apply]) 1); +by (rtac H_cong 1); (*expose the equality of cuts*) +by (rtac refl 2); +by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1); +by (strip_tac 1); +by (res_inst_tac [("r2","r^+")] (is_recfun_equal_lemma RS mp RS mp) 1); +by (atac 1); +by (rtac trans_trancl 1); +by (rtac unfold_the_recfun 1); +by (atac 1); +by (rtac trans_trancl 1); +by (rtac unfold_the_recfun 1); +by (atac 1); +by (rtac trans_trancl 1); +by (rtac transD 1); +by (rtac trans_trancl 1); +by (forw_inst_tac [("a","ya")] r_into_trancl 1); +by (atac 1); +by (atac 1); +by (forw_inst_tac [("a","ya")] r_into_trancl 1); +by (atac 1); +qed "wfrec"; + +(*--------------Old proof----------------------------------------------------- +goalw WF.thy [wfrec_def] + "!!r. wf(r) ==> wfrec r H a = H (cut (wfrec r H) r a) a"; by (etac (wf_trancl RS wftrec RS ssubst) 1); by (rtac trans_trancl 1); by (rtac (refl RS H_cong) 1); (*expose the equality of cuts*) -by (simp_tac (!simpset addsimps [cut_cut_eq, cut_apply, r_into_trancl]) 1); +by (simp_tac (HOL_ss addsimps [cuts_eq, cut_apply, r_into_trancl]) 1); qed "wfrec"; +---------------------------------------------------------------------------*) -(*This form avoids giant explosions in proofs. NOTE USE OF == *) +(*--------------------------------------------------------------------------- + * This form avoids giant explosions in proofs. NOTE USE OF == + *---------------------------------------------------------------------------*) val rew::prems = goal WF.thy - "[| !!x. f(x)==wfrec r x H; wf(r) |] ==> f(a) = H a (cut (%x.f(x)) r a)"; + "[| f==wfrec r H; wf(r) |] ==> f(a) = H (cut f r a) a"; by (rewtac rew); by (REPEAT (resolve_tac (prems@[wfrec]) 1)); qed "def_wfrec"; +