diff -r 40f5c6b2e8aa -r 7f6178b655a8 src/HOL/Library/Rewrite.thy --- a/src/HOL/Library/Rewrite.thy Thu Oct 28 18:37:33 2021 +0200 +++ b/src/HOL/Library/Rewrite.thy Thu Oct 28 20:01:59 2021 +0200 @@ -14,14 +14,6 @@ fixes f :: "'a::{} \ 'b::{}" shows "f \ \x. f x" . -lemma rewr_imp: - assumes "PROP A \ PROP B" - shows "(PROP A \ PROP C) \ (PROP B \ PROP C)" - apply (rule Pure.equal_intr_rule) - apply (drule equal_elim_rule2[OF assms]; assumption) - apply (drule equal_elim_rule1[OF assms]; assumption) - done - lemma imp_cong_eq: "(PROP A \ (PROP B \ PROP C) \ (PROP B' \ PROP C')) \ ((PROP B \ PROP A \ PROP C) \ (PROP B' \ PROP A \ PROP C'))"