diff -r 2d7619fc0e1a -r 7fa9605b226c src/HOL/String.thy --- a/src/HOL/String.thy Tue Aug 18 21:45:24 2020 +0100 +++ b/src/HOL/String.thy Wed Aug 19 12:58:28 2020 +0100 @@ -158,7 +158,7 @@ proof - have "range (of_char :: char \ nat) = of_char ` char_of ` {0::nat..<256}" by (auto simp add: range_nat_of_char intro!: image_eqI) - with inj_of_char [where ?'a = nat] show ?thesis + with inj_of_char [where ?'a = nat] show ?thesis by (simp add: inj_image_eq_iff) qed @@ -523,16 +523,16 @@ begin qualified lift_definition less_eq_literal :: "String.literal \ String.literal \ bool" - is "order.lexordp_eq (\c d. of_char c < (of_char d :: nat))" + is "ord.lexordp_eq (\c d. of_char c < (of_char d :: nat))" . qualified lift_definition less_literal :: "String.literal \ String.literal \ bool" - is "order.lexordp (\c d. of_char c < (of_char d :: nat))" + is "ord.lexordp (\c d. of_char c < (of_char d :: nat))" . instance proof - - from linorder_char interpret linorder "order.lexordp_eq (\c d. of_char c < (of_char d :: nat))" - "order.lexordp (\c d. of_char c < (of_char d :: nat)) :: string \ string \ bool" + from linorder_char interpret linorder "ord.lexordp_eq (\c d. of_char c < (of_char d :: nat))" + "ord.lexordp (\c d. of_char c < (of_char d :: nat)) :: string \ string \ bool" by (rule linorder.lexordp_linorder) show "PROP ?thesis" by (standard; transfer) (simp_all add: less_le_not_le linear) @@ -602,7 +602,7 @@ fix cs assume "\c\set cs. \ digit7 c" then show "map (String.ascii_of \ char_of) (map of_char cs) = cs" - by (induction cs) (simp_all add: String.ascii_of_idem) + by (induction cs) (simp_all add: String.ascii_of_idem) qed qualified lemma explode_code [code]: @@ -628,7 +628,7 @@ text \Alternative constructor for generated computations\ context -begin +begin qualified definition Literal' :: "bool \ bool \ bool \ bool \ bool \ bool \ bool \ String.literal \ String.literal" where [simp]: "Literal' = String.Literal"