diff -r 6969d0ffc576 -r 7ff71bdcf731 src/HOL/Analysis/Uniform_Limit.thy --- a/src/HOL/Analysis/Uniform_Limit.thy Tue Dec 20 22:24:36 2022 +0000 +++ b/src/HOL/Analysis/Uniform_Limit.thy Wed Dec 21 12:30:48 2022 +0000 @@ -361,6 +361,19 @@ qed qed (metis uniformly_convergent_on_sum_E) +lemma uniform_limit_suminf: + fixes f:: "nat \ 'a::{metric_space, comm_monoid_add} \ 'a" + assumes "uniformly_convergent_on X (\n x. \kn x. \kx. \k. f k x) sequentially" +proof - + obtain S where S: "uniform_limit X (\n x. \kk. f k x) = S x" if "x \ X" for x + using that sums_iff sums_def by (blast intro: tendsto_uniform_limitI [OF S]) + with S show ?thesis + by (simp cong: uniform_limit_cong') +qed + text \TODO: remove explicit formulations @{thm uniformly_convergent_eq_cauchy uniformly_cauchy_imp_uniformly_convergent}?!\