diff -r e67760c1b851 -r 7ffdbc24b27f src/HOLCF/Library/Stream.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOLCF/Library/Stream.thy Mon May 24 12:10:24 2010 -0700 @@ -0,0 +1,965 @@ +(* Title: HOLCF/ex/Stream.thy + Author: Franz Regensburger, David von Oheimb, Borislav Gajanovic +*) + +header {* General Stream domain *} + +theory Stream +imports HOLCF Nat_Infinity +begin + +domain 'a stream = scons (ft::'a) (lazy rt::"'a stream") (infixr "&&" 65) + +definition + smap :: "('a \ 'b) \ 'a stream \ 'b stream" where + "smap = fix\(\ h f s. case s of x && xs \ f\x && h\f\xs)" + +definition + sfilter :: "('a \ tr) \ 'a stream \ 'a stream" where + "sfilter = fix\(\ h p s. case s of x && xs \ + If p\x then x && h\p\xs else h\p\xs fi)" + +definition + slen :: "'a stream \ inat" ("#_" [1000] 1000) where + "#s = (if stream_finite s then Fin (LEAST n. stream_take n\s = s) else \)" + + +(* concatenation *) + +definition + i_rt :: "nat => 'a stream => 'a stream" where (* chops the first i elements *) + "i_rt = (%i s. iterate i$rt$s)" + +definition + i_th :: "nat => 'a stream => 'a" where (* the i-th element *) + "i_th = (%i s. ft$(i_rt i s))" + +definition + sconc :: "'a stream => 'a stream => 'a stream" (infixr "ooo" 65) where + "s1 ooo s2 = (case #s1 of + Fin n \ (SOME s. (stream_take n$s=s1) & (i_rt n s = s2)) + | \ \ s1)" + +primrec constr_sconc' :: "nat => 'a stream => 'a stream => 'a stream" +where + constr_sconc'_0: "constr_sconc' 0 s1 s2 = s2" +| constr_sconc'_Suc: "constr_sconc' (Suc n) s1 s2 = ft$s1 && + constr_sconc' n (rt$s1) s2" + +definition + constr_sconc :: "'a stream => 'a stream => 'a stream" where (* constructive *) + "constr_sconc s1 s2 = (case #s1 of + Fin n \ constr_sconc' n s1 s2 + | \ \ s1)" + + +(* ----------------------------------------------------------------------- *) +(* theorems about scons *) +(* ----------------------------------------------------------------------- *) + + +section "scons" + +lemma scons_eq_UU: "(a && s = UU) = (a = UU)" +by simp + +lemma scons_not_empty: "[| a && x = UU; a ~= UU |] ==> R" +by simp + +lemma stream_exhaust_eq: "(x ~= UU) = (EX a y. a ~= UU & x = a && y)" +by (cases x, auto) + +lemma stream_neq_UU: "x~=UU ==> EX a a_s. x=a&&a_s & a~=UU" +by (simp add: stream_exhaust_eq,auto) + +lemma stream_prefix: + "[| a && s << t; a ~= UU |] ==> EX b tt. t = b && tt & b ~= UU & s << tt" +by (cases t, auto) + +lemma stream_prefix': + "b ~= UU ==> x << b && z = + (x = UU | (EX a y. x = a && y & a ~= UU & a << b & y << z))" +by (cases x, auto) + + +(* +lemma stream_prefix1: "[| x< x&&xs << y&&ys" +by (insert stream_prefix' [of y "x&&xs" ys],force) +*) + +lemma stream_flat_prefix: + "[| x && xs << y && ys; (x::'a::flat) ~= UU|] ==> x = y & xs << ys" +apply (case_tac "y=UU",auto) +by (drule ax_flat,simp) + + + + +(* ----------------------------------------------------------------------- *) +(* theorems about stream_when *) +(* ----------------------------------------------------------------------- *) + +section "stream_when" + + +lemma stream_when_strictf: "stream_when$UU$s=UU" +by (cases s, auto) + + + +(* ----------------------------------------------------------------------- *) +(* theorems about ft and rt *) +(* ----------------------------------------------------------------------- *) + + +section "ft & rt" + + +lemma ft_defin: "s~=UU ==> ft$s~=UU" +by simp + +lemma rt_strict_rev: "rt$s~=UU ==> s~=UU" +by auto + +lemma surjectiv_scons: "(ft$s)&&(rt$s)=s" +by (cases s, auto) + +lemma monofun_rt_mult: "x << s ==> iterate i$rt$x << iterate i$rt$s" +by (rule monofun_cfun_arg) + + + +(* ----------------------------------------------------------------------- *) +(* theorems about stream_take *) +(* ----------------------------------------------------------------------- *) + + +section "stream_take" + + +lemma stream_reach2: "(LUB i. stream_take i$s) = s" +by (rule stream.reach) + +lemma chain_stream_take: "chain (%i. stream_take i$s)" +by simp + +lemma stream_take_prefix [simp]: "stream_take n$s << s" +apply (insert stream_reach2 [of s]) +apply (erule subst) back +apply (rule is_ub_thelub) +by (simp only: chain_stream_take) + +lemma stream_take_more [rule_format]: + "ALL x. stream_take n$x = x --> stream_take (Suc n)$x = x" +apply (induct_tac n,auto) +apply (case_tac "x=UU",auto) +by (drule stream_exhaust_eq [THEN iffD1],auto) + +lemma stream_take_lemma3 [rule_format]: + "ALL x xs. x~=UU --> stream_take n$(x && xs) = x && xs --> stream_take n$xs=xs" +apply (induct_tac n,clarsimp) +(*apply (drule sym, erule scons_not_empty, simp)*) +apply (clarify, rule stream_take_more) +apply (erule_tac x="x" in allE) +by (erule_tac x="xs" in allE,simp) + +lemma stream_take_lemma4: + "ALL x xs. stream_take n$xs=xs --> stream_take (Suc n)$(x && xs) = x && xs" +by auto + +lemma stream_take_idempotent [rule_format, simp]: + "ALL s. stream_take n$(stream_take n$s) = stream_take n$s" +apply (induct_tac n, auto) +apply (case_tac "s=UU", auto) +by (drule stream_exhaust_eq [THEN iffD1], auto) + +lemma stream_take_take_Suc [rule_format, simp]: + "ALL s. stream_take n$(stream_take (Suc n)$s) = + stream_take n$s" +apply (induct_tac n, auto) +apply (case_tac "s=UU", auto) +by (drule stream_exhaust_eq [THEN iffD1], auto) + +lemma mono_stream_take_pred: + "stream_take (Suc n)$s1 << stream_take (Suc n)$s2 ==> + stream_take n$s1 << stream_take n$s2" +by (insert monofun_cfun_arg [of "stream_take (Suc n)$s1" + "stream_take (Suc n)$s2" "stream_take n"], auto) +(* +lemma mono_stream_take_pred: + "stream_take (Suc n)$s1 << stream_take (Suc n)$s2 ==> + stream_take n$s1 << stream_take n$s2" +by (drule mono_stream_take [of _ _ n],simp) +*) + +lemma stream_take_lemma10 [rule_format]: + "ALL k<=n. stream_take n$s1 << stream_take n$s2 + --> stream_take k$s1 << stream_take k$s2" +apply (induct_tac n,simp,clarsimp) +apply (case_tac "k=Suc n",blast) +apply (erule_tac x="k" in allE) +by (drule mono_stream_take_pred,simp) + +lemma stream_take_le_mono : "k<=n ==> stream_take k$s1 << stream_take n$s1" +apply (insert chain_stream_take [of s1]) +by (drule chain_mono,auto) + +lemma mono_stream_take: "s1 << s2 ==> stream_take n$s1 << stream_take n$s2" +by (simp add: monofun_cfun_arg) + +(* +lemma stream_take_prefix [simp]: "stream_take n$s << s" +apply (subgoal_tac "s=(LUB n. stream_take n$s)") + apply (erule ssubst, rule is_ub_thelub) + apply (simp only: chain_stream_take) +by (simp only: stream_reach2) +*) + +lemma stream_take_take_less:"stream_take k$(stream_take n$s) << stream_take k$s" +by (rule monofun_cfun_arg,auto) + + +(* ------------------------------------------------------------------------- *) +(* special induction rules *) +(* ------------------------------------------------------------------------- *) + + +section "induction" + +lemma stream_finite_ind: + "[| stream_finite x; P UU; !!a s. [| a ~= UU; P s |] ==> P (a && s) |] ==> P x" +apply (simp add: stream.finite_def,auto) +apply (erule subst) +by (drule stream.finite_induct [of P _ x], auto) + +lemma stream_finite_ind2: +"[| P UU; !! x. x ~= UU ==> P (x && UU); !! y z s. [| y ~= UU; z ~= UU; P s |] ==> P (y && z && s )|] ==> + !s. P (stream_take n$s)" +apply (rule nat_less_induct [of _ n],auto) +apply (case_tac n, auto) +apply (case_tac nat, auto) +apply (case_tac "s=UU",clarsimp) +apply (drule stream_exhaust_eq [THEN iffD1],clarsimp) +apply (case_tac "s=UU",clarsimp) +apply (drule stream_exhaust_eq [THEN iffD1],clarsimp) +apply (case_tac "y=UU",clarsimp) +by (drule stream_exhaust_eq [THEN iffD1],clarsimp) + +lemma stream_ind2: +"[| adm P; P UU; !!a. a ~= UU ==> P (a && UU); !!a b s. [| a ~= UU; b ~= UU; P s |] ==> P (a && b && s) |] ==> P x" +apply (insert stream.reach [of x],erule subst) +apply (erule admD, rule chain_stream_take) +apply (insert stream_finite_ind2 [of P]) +by simp + + + +(* ----------------------------------------------------------------------- *) +(* simplify use of coinduction *) +(* ----------------------------------------------------------------------- *) + + +section "coinduction" + +lemma stream_coind_lemma2: "!s1 s2. R s1 s2 --> ft$s1 = ft$s2 & R (rt$s1) (rt$s2) ==> stream_bisim R" + apply (simp add: stream.bisim_def,clarsimp) + apply (drule spec, drule spec, drule (1) mp) + apply (case_tac "x", simp) + apply (case_tac "x'", simp) +by auto + + + +(* ----------------------------------------------------------------------- *) +(* theorems about stream_finite *) +(* ----------------------------------------------------------------------- *) + + +section "stream_finite" + +lemma stream_finite_UU [simp]: "stream_finite UU" +by (simp add: stream.finite_def) + +lemma stream_finite_UU_rev: "~ stream_finite s ==> s ~= UU" +by (auto simp add: stream.finite_def) + +lemma stream_finite_lemma1: "stream_finite xs ==> stream_finite (x && xs)" +apply (simp add: stream.finite_def,auto) +apply (rule_tac x="Suc n" in exI) +by (simp add: stream_take_lemma4) + +lemma stream_finite_lemma2: "[| x ~= UU; stream_finite (x && xs) |] ==> stream_finite xs" +apply (simp add: stream.finite_def, auto) +apply (rule_tac x="n" in exI) +by (erule stream_take_lemma3,simp) + +lemma stream_finite_rt_eq: "stream_finite (rt$s) = stream_finite s" +apply (cases s, auto) +apply (rule stream_finite_lemma1, simp) +by (rule stream_finite_lemma2,simp) + +lemma stream_finite_less: "stream_finite s ==> !t. t< stream_finite t" +apply (erule stream_finite_ind [of s], auto) +apply (case_tac "t=UU", auto) +apply (drule stream_exhaust_eq [THEN iffD1],auto) +apply (erule_tac x="y" in allE, simp) +by (rule stream_finite_lemma1, simp) + +lemma stream_take_finite [simp]: "stream_finite (stream_take n$s)" +apply (simp add: stream.finite_def) +by (rule_tac x="n" in exI,simp) + +lemma adm_not_stream_finite: "adm (%x. ~ stream_finite x)" +apply (rule adm_upward) +apply (erule contrapos_nn) +apply (erule (1) stream_finite_less [rule_format]) +done + + + +(* ----------------------------------------------------------------------- *) +(* theorems about stream length *) +(* ----------------------------------------------------------------------- *) + + +section "slen" + +lemma slen_empty [simp]: "#\ = 0" +by (simp add: slen_def stream.finite_def zero_inat_def Least_equality) + +lemma slen_scons [simp]: "x ~= \ ==> #(x&&xs) = iSuc (#xs)" +apply (case_tac "stream_finite (x && xs)") +apply (simp add: slen_def, auto) +apply (simp add: stream.finite_def, auto simp add: iSuc_Fin) +apply (rule Least_Suc2, auto) +(*apply (drule sym)*) +(*apply (drule sym scons_eq_UU [THEN iffD1],simp)*) +apply (erule stream_finite_lemma2, simp) +apply (simp add: slen_def, auto) +by (drule stream_finite_lemma1,auto) + +lemma slen_less_1_eq: "(#x < Fin (Suc 0)) = (x = \)" +by (cases x, auto simp add: Fin_0 iSuc_Fin[THEN sym]) + +lemma slen_empty_eq: "(#x = 0) = (x = \)" +by (cases x, auto) + +lemma slen_scons_eq: "(Fin (Suc n) < #x) = (? a y. x = a && y & a ~= \ & Fin n < #y)" +apply (auto, case_tac "x=UU",auto) +apply (drule stream_exhaust_eq [THEN iffD1], auto) +apply (case_tac "#y") apply simp_all +apply (case_tac "#y") apply simp_all +done + +lemma slen_iSuc: "#x = iSuc n --> (? a y. x = a&&y & a ~= \ & #y = n)" +by (cases x, auto) + +lemma slen_stream_take_finite [simp]: "#(stream_take n$s) ~= \" +by (simp add: slen_def) + +lemma slen_scons_eq_rev: "(#x < Fin (Suc (Suc n))) = (!a y. x ~= a && y | a = \ | #y < Fin (Suc n))" + apply (cases x, auto) + apply (simp add: zero_inat_def) + apply (case_tac "#stream") apply (simp_all add: iSuc_Fin) + apply (case_tac "#stream") apply (simp_all add: iSuc_Fin) +done + +lemma slen_take_lemma4 [rule_format]: + "!s. stream_take n$s ~= s --> #(stream_take n$s) = Fin n" +apply (induct n, auto simp add: Fin_0) +apply (case_tac "s=UU", simp) +by (drule stream_exhaust_eq [THEN iffD1], auto simp add: iSuc_Fin) + +(* +lemma stream_take_idempotent [simp]: + "stream_take n$(stream_take n$s) = stream_take n$s" +apply (case_tac "stream_take n$s = s") +apply (auto,insert slen_take_lemma4 [of n s]); +by (auto,insert slen_take_lemma1 [of "stream_take n$s" n],simp) + +lemma stream_take_take_Suc [simp]: "stream_take n$(stream_take (Suc n)$s) = + stream_take n$s" +apply (simp add: po_eq_conv,auto) + apply (simp add: stream_take_take_less) +apply (subgoal_tac "stream_take n$s = stream_take n$(stream_take n$s)") + apply (erule ssubst) + apply (rule_tac monofun_cfun_arg) + apply (insert chain_stream_take [of s]) +by (simp add: chain_def,simp) +*) + +lemma slen_take_eq: "ALL x. (Fin n < #x) = (stream_take n\x ~= x)" +apply (induct_tac n, auto) +apply (simp add: Fin_0, clarsimp) +apply (drule not_sym) +apply (drule slen_empty_eq [THEN iffD1], simp) +apply (case_tac "x=UU", simp) +apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) +apply (erule_tac x="y" in allE, auto) +apply (simp_all add: not_less iSuc_Fin) +apply (case_tac "#y") apply simp_all +apply (case_tac "x=UU", simp) +apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) +apply (erule_tac x="y" in allE, simp) +apply (case_tac "#y") by simp_all + +lemma slen_take_eq_rev: "(#x <= Fin n) = (stream_take n\x = x)" +by (simp add: linorder_not_less [symmetric] slen_take_eq) + +lemma slen_take_lemma1: "#x = Fin n ==> stream_take n\x = x" +by (rule slen_take_eq_rev [THEN iffD1], auto) + +lemma slen_rt_mono: "#s2 <= #s1 ==> #(rt$s2) <= #(rt$s1)" +apply (cases s1) + by (cases s2, simp+)+ + +lemma slen_take_lemma5: "#(stream_take n$s) <= Fin n" +apply (case_tac "stream_take n$s = s") + apply (simp add: slen_take_eq_rev) +by (simp add: slen_take_lemma4) + +lemma slen_take_lemma2: "!x. ~stream_finite x --> #(stream_take i\x) = Fin i" +apply (simp add: stream.finite_def, auto) +by (simp add: slen_take_lemma4) + +lemma slen_infinite: "stream_finite x = (#x ~= Infty)" +by (simp add: slen_def) + +lemma slen_mono_lemma: "stream_finite s ==> ALL t. s << t --> #s <= #t" +apply (erule stream_finite_ind [of s], auto) +apply (case_tac "t=UU", auto) +apply (drule stream_exhaust_eq [THEN iffD1], auto) +done + +lemma slen_mono: "s << t ==> #s <= #t" +apply (case_tac "stream_finite t") +apply (frule stream_finite_less) +apply (erule_tac x="s" in allE, simp) +apply (drule slen_mono_lemma, auto) +by (simp add: slen_def) + +lemma iterate_lemma: "F$(iterate n$F$x) = iterate n$F$(F$x)" +by (insert iterate_Suc2 [of n F x], auto) + +lemma slen_rt_mult [rule_format]: "!x. Fin (i + j) <= #x --> Fin j <= #(iterate i$rt$x)" +apply (induct i, auto) +apply (case_tac "x=UU", auto simp add: zero_inat_def) +apply (drule stream_exhaust_eq [THEN iffD1], auto) +apply (erule_tac x="y" in allE, auto) +apply (simp add: not_le) apply (case_tac "#y") apply (simp_all add: iSuc_Fin) +by (simp add: iterate_lemma) + +lemma slen_take_lemma3 [rule_format]: + "!(x::'a::flat stream) y. Fin n <= #x --> x << y --> stream_take n\x = stream_take n\y" +apply (induct_tac n, auto) +apply (case_tac "x=UU", auto) +apply (simp add: zero_inat_def) +apply (simp add: Suc_ile_eq) +apply (case_tac "y=UU", clarsimp) +apply (drule stream_exhaust_eq [THEN iffD1], clarsimp)+ +apply (erule_tac x="ya" in allE, simp) +by (drule ax_flat, simp) + +lemma slen_strict_mono_lemma: + "stream_finite t ==> !s. #(s::'a::flat stream) = #t & s << t --> s = t" +apply (erule stream_finite_ind, auto) +apply (case_tac "sa=UU", auto) +apply (drule stream_exhaust_eq [THEN iffD1], clarsimp) +by (drule ax_flat, simp) + +lemma slen_strict_mono: "[|stream_finite t; s ~= t; s << (t::'a::flat stream) |] ==> #s < #t" +by (auto simp add: slen_mono less_le dest: slen_strict_mono_lemma) + +lemma stream_take_Suc_neq: "stream_take (Suc n)$s ~=s ==> + stream_take n$s ~= stream_take (Suc n)$s" +apply auto +apply (subgoal_tac "stream_take n$s ~=s") + apply (insert slen_take_lemma4 [of n s],auto) +apply (cases s, simp) +by (simp add: slen_take_lemma4 iSuc_Fin) + +(* ----------------------------------------------------------------------- *) +(* theorems about smap *) +(* ----------------------------------------------------------------------- *) + + +section "smap" + +lemma smap_unfold: "smap = (\ f t. case t of x&&xs \ f$x && smap$f$xs)" +by (insert smap_def [where 'a='a and 'b='b, THEN eq_reflection, THEN fix_eq2], auto) + +lemma smap_empty [simp]: "smap\f\\ = \" +by (subst smap_unfold, simp) + +lemma smap_scons [simp]: "x~=\ ==> smap\f\(x&&xs) = (f\x)&&(smap\f\xs)" +by (subst smap_unfold, force) + + + +(* ----------------------------------------------------------------------- *) +(* theorems about sfilter *) +(* ----------------------------------------------------------------------- *) + +section "sfilter" + +lemma sfilter_unfold: + "sfilter = (\ p s. case s of x && xs \ + If p\x then x && sfilter\p\xs else sfilter\p\xs fi)" +by (insert sfilter_def [where 'a='a, THEN eq_reflection, THEN fix_eq2], auto) + +lemma strict_sfilter: "sfilter\\ = \" +apply (rule ext_cfun) +apply (subst sfilter_unfold, auto) +apply (case_tac "x=UU", auto) +by (drule stream_exhaust_eq [THEN iffD1], auto) + +lemma sfilter_empty [simp]: "sfilter\f\\ = \" +by (subst sfilter_unfold, force) + +lemma sfilter_scons [simp]: + "x ~= \ ==> sfilter\f\(x && xs) = + If f\x then x && sfilter\f\xs else sfilter\f\xs fi" +by (subst sfilter_unfold, force) + + +(* ----------------------------------------------------------------------- *) + section "i_rt" +(* ----------------------------------------------------------------------- *) + +lemma i_rt_UU [simp]: "i_rt n UU = UU" + by (induct n) (simp_all add: i_rt_def) + +lemma i_rt_0 [simp]: "i_rt 0 s = s" +by (simp add: i_rt_def) + +lemma i_rt_Suc [simp]: "a ~= UU ==> i_rt (Suc n) (a&&s) = i_rt n s" +by (simp add: i_rt_def iterate_Suc2 del: iterate_Suc) + +lemma i_rt_Suc_forw: "i_rt (Suc n) s = i_rt n (rt$s)" +by (simp only: i_rt_def iterate_Suc2) + +lemma i_rt_Suc_back:"i_rt (Suc n) s = rt$(i_rt n s)" +by (simp only: i_rt_def,auto) + +lemma i_rt_mono: "x << s ==> i_rt n x << i_rt n s" +by (simp add: i_rt_def monofun_rt_mult) + +lemma i_rt_ij_lemma: "Fin (i + j) <= #x ==> Fin j <= #(i_rt i x)" +by (simp add: i_rt_def slen_rt_mult) + +lemma slen_i_rt_mono: "#s2 <= #s1 ==> #(i_rt n s2) <= #(i_rt n s1)" +apply (induct_tac n,auto) +apply (simp add: i_rt_Suc_back) +by (drule slen_rt_mono,simp) + +lemma i_rt_take_lemma1 [rule_format]: "ALL s. i_rt n (stream_take n$s) = UU" +apply (induct_tac n) + apply (simp add: i_rt_Suc_back,auto) +apply (case_tac "s=UU",auto) +by (drule stream_exhaust_eq [THEN iffD1],auto) + +lemma i_rt_slen: "(i_rt n s = UU) = (stream_take n$s = s)" +apply auto + apply (insert i_rt_ij_lemma [of n "Suc 0" s]) + apply (subgoal_tac "#(i_rt n s)=0") + apply (case_tac "stream_take n$s = s",simp+) + apply (insert slen_take_eq [rule_format,of n s],simp) + apply (cases "#s") apply (simp_all add: zero_inat_def) + apply (simp add: slen_take_eq) + apply (cases "#s") + using i_rt_take_lemma1 [of n s] + apply (simp_all add: zero_inat_def) + done + +lemma i_rt_lemma_slen: "#s=Fin n ==> i_rt n s = UU" +by (simp add: i_rt_slen slen_take_lemma1) + +lemma stream_finite_i_rt [simp]: "stream_finite (i_rt n s) = stream_finite s" +apply (induct_tac n, auto) + apply (cases s, auto simp del: i_rt_Suc) +by (simp add: i_rt_Suc_back stream_finite_rt_eq)+ + +lemma take_i_rt_len_lemma: "ALL sl x j t. Fin sl = #x & n <= sl & + #(stream_take n$x) = Fin t & #(i_rt n x)= Fin j + --> Fin (j + t) = #x" +apply (induct n, auto) + apply (simp add: zero_inat_def) +apply (case_tac "x=UU",auto) + apply (simp add: zero_inat_def) +apply (drule stream_exhaust_eq [THEN iffD1],clarsimp) +apply (subgoal_tac "EX k. Fin k = #y",clarify) + apply (erule_tac x="k" in allE) + apply (erule_tac x="y" in allE,auto) + apply (erule_tac x="THE p. Suc p = t" in allE,auto) + apply (simp add: iSuc_def split: inat.splits) + apply (simp add: iSuc_def split: inat.splits) + apply (simp only: the_equality) + apply (simp add: iSuc_def split: inat.splits) + apply force +apply (simp add: iSuc_def split: inat.splits) +done + +lemma take_i_rt_len: +"[| Fin sl = #x; n <= sl; #(stream_take n$x) = Fin t; #(i_rt n x) = Fin j |] ==> + Fin (j + t) = #x" +by (blast intro: take_i_rt_len_lemma [rule_format]) + + +(* ----------------------------------------------------------------------- *) + section "i_th" +(* ----------------------------------------------------------------------- *) + +lemma i_th_i_rt_step: +"[| i_th n s1 << i_th n s2; i_rt (Suc n) s1 << i_rt (Suc n) s2 |] ==> + i_rt n s1 << i_rt n s2" +apply (simp add: i_th_def i_rt_Suc_back) +apply (cases "i_rt n s1", simp) +apply (cases "i_rt n s2", auto) +done + +lemma i_th_stream_take_Suc [rule_format]: + "ALL s. i_th n (stream_take (Suc n)$s) = i_th n s" +apply (induct_tac n,auto) + apply (simp add: i_th_def) + apply (case_tac "s=UU",auto) + apply (drule stream_exhaust_eq [THEN iffD1],auto) +apply (case_tac "s=UU",simp add: i_th_def) +apply (drule stream_exhaust_eq [THEN iffD1],auto) +by (simp add: i_th_def i_rt_Suc_forw) + +lemma i_th_last: "i_th n s && UU = i_rt n (stream_take (Suc n)$s)" +apply (insert surjectiv_scons [of "i_rt n (stream_take (Suc n)$s)"]) +apply (rule i_th_stream_take_Suc [THEN subst]) +apply (simp add: i_th_def i_rt_Suc_back [symmetric]) +by (simp add: i_rt_take_lemma1) + +lemma i_th_last_eq: +"i_th n s1 = i_th n s2 ==> i_rt n (stream_take (Suc n)$s1) = i_rt n (stream_take (Suc n)$s2)" +apply (insert i_th_last [of n s1]) +apply (insert i_th_last [of n s2]) +by auto + +lemma i_th_prefix_lemma: +"[| k <= n; stream_take (Suc n)$s1 << stream_take (Suc n)$s2 |] ==> + i_th k s1 << i_th k s2" +apply (insert i_th_stream_take_Suc [of k s1, THEN sym]) +apply (insert i_th_stream_take_Suc [of k s2, THEN sym],auto) +apply (simp add: i_th_def) +apply (rule monofun_cfun, auto) +apply (rule i_rt_mono) +by (blast intro: stream_take_lemma10) + +lemma take_i_rt_prefix_lemma1: + "stream_take (Suc n)$s1 << stream_take (Suc n)$s2 ==> + i_rt (Suc n) s1 << i_rt (Suc n) s2 ==> + i_rt n s1 << i_rt n s2 & stream_take n$s1 << stream_take n$s2" +apply auto + apply (insert i_th_prefix_lemma [of n n s1 s2]) + apply (rule i_th_i_rt_step,auto) +by (drule mono_stream_take_pred,simp) + +lemma take_i_rt_prefix_lemma: +"[| stream_take n$s1 << stream_take n$s2; i_rt n s1 << i_rt n s2 |] ==> s1 << s2" +apply (case_tac "n=0",simp) +apply (auto) +apply (subgoal_tac "stream_take 0$s1 << stream_take 0$s2 & + i_rt 0 s1 << i_rt 0 s2") + defer 1 + apply (rule zero_induct,blast) + apply (blast dest: take_i_rt_prefix_lemma1) +by simp + +lemma streams_prefix_lemma: "(s1 << s2) = + (stream_take n$s1 << stream_take n$s2 & i_rt n s1 << i_rt n s2)" +apply auto + apply (simp add: monofun_cfun_arg) + apply (simp add: i_rt_mono) +by (erule take_i_rt_prefix_lemma,simp) + +lemma streams_prefix_lemma1: + "[| stream_take n$s1 = stream_take n$s2; i_rt n s1 = i_rt n s2 |] ==> s1 = s2" +apply (simp add: po_eq_conv,auto) + apply (insert streams_prefix_lemma) + by blast+ + + +(* ----------------------------------------------------------------------- *) + section "sconc" +(* ----------------------------------------------------------------------- *) + +lemma UU_sconc [simp]: " UU ooo s = s " +by (simp add: sconc_def zero_inat_def) + +lemma scons_neq_UU: "a~=UU ==> a && s ~=UU" +by auto + +lemma singleton_sconc [rule_format, simp]: "x~=UU --> (x && UU) ooo y = x && y" +apply (simp add: sconc_def zero_inat_def iSuc_def split: inat.splits, auto) +apply (rule someI2_ex,auto) + apply (rule_tac x="x && y" in exI,auto) +apply (simp add: i_rt_Suc_forw) +apply (case_tac "xa=UU",simp) +by (drule stream_exhaust_eq [THEN iffD1],auto) + +lemma ex_sconc [rule_format]: + "ALL k y. #x = Fin k --> (EX w. stream_take k$w = x & i_rt k w = y)" +apply (case_tac "#x") + apply (rule stream_finite_ind [of x],auto) + apply (simp add: stream.finite_def) + apply (drule slen_take_lemma1,blast) + apply (simp_all add: zero_inat_def iSuc_def split: inat.splits) +apply (erule_tac x="y" in allE,auto) +by (rule_tac x="a && w" in exI,auto) + +lemma rt_sconc1: "Fin n = #x ==> i_rt n (x ooo y) = y" +apply (simp add: sconc_def split: inat.splits, arith?,auto) +apply (rule someI2_ex,auto) +by (drule ex_sconc,simp) + +lemma sconc_inj2: "\Fin n = #x; x ooo y = x ooo z\ \ y = z" +apply (frule_tac y=y in rt_sconc1) +by (auto elim: rt_sconc1) + +lemma sconc_UU [simp]:"s ooo UU = s" +apply (case_tac "#s") + apply (simp add: sconc_def) + apply (rule someI2_ex) + apply (rule_tac x="s" in exI) + apply auto + apply (drule slen_take_lemma1,auto) + apply (simp add: i_rt_lemma_slen) + apply (drule slen_take_lemma1,auto) + apply (simp add: i_rt_slen) +by (simp add: sconc_def) + +lemma stream_take_sconc [simp]: "Fin n = #x ==> stream_take n$(x ooo y) = x" +apply (simp add: sconc_def) +apply (cases "#x") +apply auto +apply (rule someI2_ex, auto) +by (drule ex_sconc,simp) + +lemma scons_sconc [rule_format,simp]: "a~=UU --> (a && x) ooo y = a && x ooo y" +apply (cases "#x",auto) + apply (simp add: sconc_def iSuc_Fin) + apply (rule someI2_ex) + apply (drule ex_sconc, simp) + apply (rule someI2_ex, auto) + apply (simp add: i_rt_Suc_forw) + apply (rule_tac x="a && x" in exI, auto) + apply (case_tac "xa=UU",auto) + apply (drule stream_exhaust_eq [THEN iffD1],auto) + apply (drule streams_prefix_lemma1,simp+) +by (simp add: sconc_def) + +lemma ft_sconc: "x ~= UU ==> ft$(x ooo y) = ft$x" +by (cases x, auto) + +lemma sconc_assoc: "(x ooo y) ooo z = x ooo y ooo z" +apply (case_tac "#x") + apply (rule stream_finite_ind [of x],auto simp del: scons_sconc) + apply (simp add: stream.finite_def del: scons_sconc) + apply (drule slen_take_lemma1,auto simp del: scons_sconc) + apply (case_tac "a = UU", auto) +by (simp add: sconc_def) + + +(* ----------------------------------------------------------------------- *) + +lemma cont_sconc_lemma1: "stream_finite x \ cont (\y. x ooo y)" +by (erule stream_finite_ind, simp_all) + +lemma cont_sconc_lemma2: "\ stream_finite x \ cont (\y. x ooo y)" +by (simp add: sconc_def slen_def) + +lemma cont_sconc: "cont (\y. x ooo y)" +apply (cases "stream_finite x") +apply (erule cont_sconc_lemma1) +apply (erule cont_sconc_lemma2) +done + +lemma sconc_mono: "y << y' ==> x ooo y << x ooo y'" +by (rule cont_sconc [THEN cont2mono, THEN monofunE]) + +lemma sconc_mono1 [simp]: "x << x ooo y" +by (rule sconc_mono [of UU, simplified]) + +(* ----------------------------------------------------------------------- *) + +lemma empty_sconc [simp]: "(x ooo y = UU) = (x = UU & y = UU)" +apply (case_tac "#x",auto) + apply (insert sconc_mono1 [of x y]) + by auto + +(* ----------------------------------------------------------------------- *) + +lemma rt_sconc [rule_format, simp]: "s~=UU --> rt$(s ooo x) = rt$s ooo x" +by (cases s, auto) + +lemma i_th_sconc_lemma [rule_format]: + "ALL x y. Fin n < #x --> i_th n (x ooo y) = i_th n x" +apply (induct_tac n, auto) +apply (simp add: Fin_0 i_th_def) +apply (simp add: slen_empty_eq ft_sconc) +apply (simp add: i_th_def) +apply (case_tac "x=UU",auto) +apply (drule stream_exhaust_eq [THEN iffD1], auto) +apply (erule_tac x="ya" in allE) +apply (case_tac "#ya") by simp_all + + + +(* ----------------------------------------------------------------------- *) + +lemma sconc_lemma [rule_format, simp]: "ALL s. stream_take n$s ooo i_rt n s = s" +apply (induct_tac n,auto) +apply (case_tac "s=UU",auto) +by (drule stream_exhaust_eq [THEN iffD1],auto) + +(* ----------------------------------------------------------------------- *) + subsection "pointwise equality" +(* ----------------------------------------------------------------------- *) + +lemma ex_last_stream_take_scons: "stream_take (Suc n)$s = + stream_take n$s ooo i_rt n (stream_take (Suc n)$s)" +by (insert sconc_lemma [of n "stream_take (Suc n)$s"],simp) + +lemma i_th_stream_take_eq: +"!!n. ALL n. i_th n s1 = i_th n s2 ==> stream_take n$s1 = stream_take n$s2" +apply (induct_tac n,auto) +apply (subgoal_tac "stream_take (Suc na)$s1 = + stream_take na$s1 ooo i_rt na (stream_take (Suc na)$s1)") + apply (subgoal_tac "i_rt na (stream_take (Suc na)$s1) = + i_rt na (stream_take (Suc na)$s2)") + apply (subgoal_tac "stream_take (Suc na)$s2 = + stream_take na$s2 ooo i_rt na (stream_take (Suc na)$s2)") + apply (insert ex_last_stream_take_scons,simp) + apply blast + apply (erule_tac x="na" in allE) + apply (insert i_th_last_eq [of _ s1 s2]) +by blast+ + +lemma pointwise_eq_lemma[rule_format]: "ALL n. i_th n s1 = i_th n s2 ==> s1 = s2" +by (insert i_th_stream_take_eq [THEN stream.take_lemma],blast) + +(* ----------------------------------------------------------------------- *) + subsection "finiteness" +(* ----------------------------------------------------------------------- *) + +lemma slen_sconc_finite1: + "[| #(x ooo y) = Infty; Fin n = #x |] ==> #y = Infty" +apply (case_tac "#y ~= Infty",auto) +apply (drule_tac y=y in rt_sconc1) +apply (insert stream_finite_i_rt [of n "x ooo y"]) +by (simp add: slen_infinite) + +lemma slen_sconc_infinite1: "#x=Infty ==> #(x ooo y) = Infty" +by (simp add: sconc_def) + +lemma slen_sconc_infinite2: "#y=Infty ==> #(x ooo y) = Infty" +apply (case_tac "#x") + apply (simp add: sconc_def) + apply (rule someI2_ex) + apply (drule ex_sconc,auto) + apply (erule contrapos_pp) + apply (insert stream_finite_i_rt) + apply (fastsimp simp add: slen_infinite,auto) +by (simp add: sconc_def) + +lemma sconc_finite: "(#x~=Infty & #y~=Infty) = (#(x ooo y)~=Infty)" +apply auto + apply (metis not_Infty_eq slen_sconc_finite1) + apply (metis not_Infty_eq slen_sconc_infinite1) +apply (metis not_Infty_eq slen_sconc_infinite2) +done + +(* ----------------------------------------------------------------------- *) + +lemma slen_sconc_mono3: "[| Fin n = #x; Fin k = #(x ooo y) |] ==> n <= k" +apply (insert slen_mono [of "x" "x ooo y"]) +apply (cases "#x") apply simp_all +apply (cases "#(x ooo y)") apply simp_all +done + +(* ----------------------------------------------------------------------- *) + subsection "finite slen" +(* ----------------------------------------------------------------------- *) + +lemma slen_sconc: "[| Fin n = #x; Fin m = #y |] ==> #(x ooo y) = Fin (n + m)" +apply (case_tac "#(x ooo y)") + apply (frule_tac y=y in rt_sconc1) + apply (insert take_i_rt_len [of "THE j. Fin j = #(x ooo y)" "x ooo y" n n m],simp) + apply (insert slen_sconc_mono3 [of n x _ y],simp) +by (insert sconc_finite [of x y],auto) + +(* ----------------------------------------------------------------------- *) + subsection "flat prefix" +(* ----------------------------------------------------------------------- *) + +lemma sconc_prefix: "(s1::'a::flat stream) << s2 ==> EX t. s1 ooo t = s2" +apply (case_tac "#s1") + apply (subgoal_tac "stream_take nat$s1 = stream_take nat$s2") + apply (rule_tac x="i_rt nat s2" in exI) + apply (simp add: sconc_def) + apply (rule someI2_ex) + apply (drule ex_sconc) + apply (simp,clarsimp,drule streams_prefix_lemma1) + apply (simp+,rule slen_take_lemma3 [of _ s1 s2]) + apply (simp+,rule_tac x="UU" in exI) +apply (insert slen_take_lemma3 [of _ s1 s2]) +by (rule stream.take_lemma,simp) + +(* ----------------------------------------------------------------------- *) + subsection "continuity" +(* ----------------------------------------------------------------------- *) + +lemma chain_sconc: "chain S ==> chain (%i. (x ooo S i))" +by (simp add: chain_def,auto simp add: sconc_mono) + +lemma chain_scons: "chain S ==> chain (%i. a && S i)" +apply (simp add: chain_def,auto) +by (rule monofun_cfun_arg,simp) + +lemma contlub_scons_lemma: "chain S ==> (LUB i. a && S i) = a && (LUB i. S i)" +by (rule cont2contlubE [OF cont_Rep_CFun2, symmetric]) + +lemma finite_lub_sconc: "chain Y ==> (stream_finite x) ==> + (LUB i. x ooo Y i) = (x ooo (LUB i. Y i))" +apply (rule stream_finite_ind [of x]) + apply (auto) +apply (subgoal_tac "(LUB i. a && (s ooo Y i)) = a && (LUB i. s ooo Y i)") + by (force,blast dest: contlub_scons_lemma chain_sconc) + +lemma contlub_sconc_lemma: + "chain Y ==> (LUB i. x ooo Y i) = (x ooo (LUB i. Y i))" +apply (case_tac "#x=Infty") + apply (simp add: sconc_def) +apply (drule finite_lub_sconc,auto simp add: slen_infinite) +done + +lemma monofun_sconc: "monofun (%y. x ooo y)" +by (simp add: monofun_def sconc_mono) + + +(* ----------------------------------------------------------------------- *) + section "constr_sconc" +(* ----------------------------------------------------------------------- *) + +lemma constr_sconc_UUs [simp]: "constr_sconc UU s = s" +by (simp add: constr_sconc_def zero_inat_def) + +lemma "x ooo y = constr_sconc x y" +apply (case_tac "#x") + apply (rule stream_finite_ind [of x],auto simp del: scons_sconc) + defer 1 + apply (simp add: constr_sconc_def del: scons_sconc) + apply (case_tac "#s") + apply (simp add: iSuc_Fin) + apply (case_tac "a=UU",auto simp del: scons_sconc) + apply (simp) + apply (simp add: sconc_def) + apply (simp add: constr_sconc_def) +apply (simp add: stream.finite_def) +by (drule slen_take_lemma1,auto) + +end