diff -r 19849d258890 -r 8018173a7979 src/FOLP/ifolp.ML --- a/src/FOLP/ifolp.ML Sat Apr 05 16:00:00 2003 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,444 +0,0 @@ -(* Title: FOLP/ifol.ML - ID: $Id$ - Author: Lawrence C Paulson, Cambridge University Computer Laboratory - Copyright 1992 University of Cambridge - -Tactics and lemmas for ifol.thy (intuitionistic first-order logic) -*) - -open IFOLP; - -signature IFOLP_LEMMAS = - sig - val allE: thm - val all_cong: thm - val all_dupE: thm - val all_impE: thm - val box_equals: thm - val conjE: thm - val conj_cong: thm - val conj_impE: thm - val contrapos: thm - val disj_cong: thm - val disj_impE: thm - val eq_cong: thm - val ex1I: thm - val ex1E: thm - val ex1_equalsE: thm -(* val ex1_cong: thm****) - val ex_cong: thm - val ex_impE: thm - val iffD1: thm - val iffD2: thm - val iffE: thm - val iffI: thm - val iff_cong: thm - val iff_impE: thm - val iff_refl: thm - val iff_sym: thm - val iff_trans: thm - val impE: thm - val imp_cong: thm - val imp_impE: thm - val mp_tac: int -> tactic - val notE: thm - val notI: thm - val not_cong: thm - val not_impE: thm - val not_sym: thm - val not_to_imp: thm - val pred1_cong: thm - val pred2_cong: thm - val pred3_cong: thm - val pred_congs: thm list - val refl: thm - val rev_mp: thm - val simp_equals: thm - val subst: thm - val ssubst: thm - val subst_context: thm - val subst_context2: thm - val subst_context3: thm - val sym: thm - val trans: thm - val TrueI: thm - val uniq_assume_tac: int -> tactic - val uniq_mp_tac: int -> tactic - end; - - -structure IFOLP_Lemmas : IFOLP_LEMMAS = -struct - -val TrueI = TrueI; - -(*** Sequent-style elimination rules for & --> and ALL ***) - -val conjE = prove_goal IFOLP.thy - "[| p:P&Q; !!x y.[| x:P; y:Q |] ==> f(x,y):R |] ==> ?a:R" - (fn prems=> - [ (REPEAT (resolve_tac prems 1 - ORELSE (resolve_tac [conjunct1, conjunct2] 1 THEN - resolve_tac prems 1))) ]); - -val impE = prove_goal IFOLP.thy - "[| p:P-->Q; q:P; !!x.x:Q ==> r(x):R |] ==> ?p:R" - (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); - -val allE = prove_goal IFOLP.thy - "[| p:ALL x.P(x); !!y.y:P(x) ==> q(y):R |] ==> ?p:R" - (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); - -(*Duplicates the quantifier; for use with eresolve_tac*) -val all_dupE = prove_goal IFOLP.thy - "[| p:ALL x.P(x); !!y z.[| y:P(x); z:ALL x.P(x) |] ==> q(y,z):R \ -\ |] ==> ?p:R" - (fn prems=> [ (REPEAT (resolve_tac (prems@[spec]) 1)) ]); - - -(*** Negation rules, which translate between ~P and P-->False ***) - -val notI = prove_goalw IFOLP.thy [not_def] "(!!x.x:P ==> q(x):False) ==> ?p:~P" - (fn prems=> [ (REPEAT (ares_tac (prems@[impI]) 1)) ]); - -val notE = prove_goalw IFOLP.thy [not_def] "[| p:~P; q:P |] ==> ?p:R" - (fn prems=> - [ (resolve_tac [mp RS FalseE] 1), - (REPEAT (resolve_tac prems 1)) ]); - -(*This is useful with the special implication rules for each kind of P. *) -val not_to_imp = prove_goal IFOLP.thy - "[| p:~P; !!x.x:(P-->False) ==> q(x):Q |] ==> ?p:Q" - (fn prems=> [ (REPEAT (ares_tac (prems@[impI,notE]) 1)) ]); - - -(* For substitution int an assumption P, reduce Q to P-->Q, substitute into - this implication, then apply impI to move P back into the assumptions. - To specify P use something like - eres_inst_tac [ ("P","ALL y. ?S(x,y)") ] rev_mp 1 *) -val rev_mp = prove_goal IFOLP.thy "[| p:P; q:P --> Q |] ==> ?p:Q" - (fn prems=> [ (REPEAT (resolve_tac (prems@[mp]) 1)) ]); - - -(*Contrapositive of an inference rule*) -val contrapos = prove_goal IFOLP.thy "[| p:~Q; !!y.y:P==>q(y):Q |] ==> ?a:~P" - (fn [major,minor]=> - [ (rtac (major RS notE RS notI) 1), - (etac minor 1) ]); - -(** Unique assumption tactic. - Ignores proof objects. - Fails unless one assumption is equal and exactly one is unifiable -**) - -local - fun discard_proof (Const("Proof",_) $ P $ _) = P; -in -val uniq_assume_tac = - SUBGOAL - (fn (prem,i) => - let val hyps = map discard_proof (Logic.strip_assums_hyp prem) - and concl = discard_proof (Logic.strip_assums_concl prem) - in - if exists (fn hyp => hyp aconv concl) hyps - then case distinct (filter (fn hyp=> could_unify(hyp,concl)) hyps) of - [_] => assume_tac i - | _ => no_tac - else no_tac - end); -end; - - -(*** Modus Ponens Tactics ***) - -(*Finds P-->Q and P in the assumptions, replaces implication by Q *) -fun mp_tac i = eresolve_tac [notE,make_elim mp] i THEN assume_tac i; - -(*Like mp_tac but instantiates no variables*) -fun uniq_mp_tac i = eresolve_tac [notE,impE] i THEN uniq_assume_tac i; - - -(*** If-and-only-if ***) - -val iffI = prove_goalw IFOLP.thy [iff_def] - "[| !!x.x:P ==> q(x):Q; !!x.x:Q ==> r(x):P |] ==> ?p:P<->Q" - (fn prems=> [ (REPEAT (ares_tac (prems@[conjI, impI]) 1)) ]); - - -(*Observe use of rewrite_rule to unfold "<->" in meta-assumptions (prems) *) -val iffE = prove_goalw IFOLP.thy [iff_def] - "[| p:P <-> Q; !!x y.[| x:P-->Q; y:Q-->P |] ==> q(x,y):R |] ==> ?p:R" - (fn prems => [ (resolve_tac [conjE] 1), (REPEAT (ares_tac prems 1)) ]); - -(* Destruct rules for <-> similar to Modus Ponens *) - -val iffD1 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q; q:P |] ==> ?p:Q" - (fn prems => [ (rtac (conjunct1 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); - -val iffD2 = prove_goalw IFOLP.thy [iff_def] "[| p:P <-> Q; q:Q |] ==> ?p:P" - (fn prems => [ (rtac (conjunct2 RS mp) 1), (REPEAT (ares_tac prems 1)) ]); - -val iff_refl = prove_goal IFOLP.thy "?p:P <-> P" - (fn _ => [ (REPEAT (ares_tac [iffI] 1)) ]); - -val iff_sym = prove_goal IFOLP.thy "p:Q <-> P ==> ?p:P <-> Q" - (fn [major] => - [ (rtac (major RS iffE) 1), - (rtac iffI 1), - (REPEAT (eresolve_tac [asm_rl,mp] 1)) ]); - -val iff_trans = prove_goal IFOLP.thy "[| p:P <-> Q; q:Q<-> R |] ==> ?p:P <-> R" - (fn prems => - [ (cut_facts_tac prems 1), - (rtac iffI 1), - (REPEAT (eresolve_tac [asm_rl,iffE] 1 ORELSE mp_tac 1)) ]); - - -(*** Unique existence. NOTE THAT the following 2 quantifications - EX!x such that [EX!y such that P(x,y)] (sequential) - EX!x,y such that P(x,y) (simultaneous) - do NOT mean the same thing. The parser treats EX!x y.P(x,y) as sequential. -***) - -val ex1I = prove_goalw IFOLP.thy [ex1_def] - "[| p:P(a); !!x u.u:P(x) ==> f(u) : x=a |] ==> ?p:EX! x. P(x)" - (fn prems => [ (REPEAT (ares_tac (prems@[exI,conjI,allI,impI]) 1)) ]); - -val ex1E = prove_goalw IFOLP.thy [ex1_def] - "[| p:EX! x.P(x); \ -\ !!x u v. [| u:P(x); v:ALL y. P(y) --> y=x |] ==> f(x,u,v):R |] ==>\ -\ ?a : R" - (fn prems => - [ (cut_facts_tac prems 1), - (REPEAT (eresolve_tac [exE,conjE] 1 ORELSE ares_tac prems 1)) ]); - - -(*** <-> congruence rules for simplification ***) - -(*Use iffE on a premise. For conj_cong, imp_cong, all_cong, ex_cong*) -fun iff_tac prems i = - resolve_tac (prems RL [iffE]) i THEN - REPEAT1 (eresolve_tac [asm_rl,mp] i); - -val conj_cong = prove_goal IFOLP.thy - "[| p:P <-> P'; !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P&Q) <-> (P'&Q')" - (fn prems => - [ (cut_facts_tac prems 1), - (REPEAT (ares_tac [iffI,conjI] 1 - ORELSE eresolve_tac [iffE,conjE,mp] 1 - ORELSE iff_tac prems 1)) ]); - -val disj_cong = prove_goal IFOLP.thy - "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P|Q) <-> (P'|Q')" - (fn prems => - [ (cut_facts_tac prems 1), - (REPEAT (eresolve_tac [iffE,disjE,disjI1,disjI2] 1 - ORELSE ares_tac [iffI] 1 - ORELSE mp_tac 1)) ]); - -val imp_cong = prove_goal IFOLP.thy - "[| p:P <-> P'; !!x.x:P' ==> q(x):Q <-> Q' |] ==> ?p:(P-->Q) <-> (P'-->Q')" - (fn prems => - [ (cut_facts_tac prems 1), - (REPEAT (ares_tac [iffI,impI] 1 - ORELSE eresolve_tac [iffE] 1 - ORELSE mp_tac 1 ORELSE iff_tac prems 1)) ]); - -val iff_cong = prove_goal IFOLP.thy - "[| p:P <-> P'; q:Q <-> Q' |] ==> ?p:(P<->Q) <-> (P'<->Q')" - (fn prems => - [ (cut_facts_tac prems 1), - (REPEAT (eresolve_tac [iffE] 1 - ORELSE ares_tac [iffI] 1 - ORELSE mp_tac 1)) ]); - -val not_cong = prove_goal IFOLP.thy - "p:P <-> P' ==> ?p:~P <-> ~P'" - (fn prems => - [ (cut_facts_tac prems 1), - (REPEAT (ares_tac [iffI,notI] 1 - ORELSE mp_tac 1 - ORELSE eresolve_tac [iffE,notE] 1)) ]); - -val all_cong = prove_goal IFOLP.thy - "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(ALL x.P(x)) <-> (ALL x.Q(x))" - (fn prems => - [ (REPEAT (ares_tac [iffI,allI] 1 - ORELSE mp_tac 1 - ORELSE eresolve_tac [allE] 1 ORELSE iff_tac prems 1)) ]); - -val ex_cong = prove_goal IFOLP.thy - "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX x.P(x)) <-> (EX x.Q(x))" - (fn prems => - [ (REPEAT (eresolve_tac [exE] 1 ORELSE ares_tac [iffI,exI] 1 - ORELSE mp_tac 1 - ORELSE iff_tac prems 1)) ]); - -(*NOT PROVED -val ex1_cong = prove_goal IFOLP.thy - "(!!x.f(x):P(x) <-> Q(x)) ==> ?p:(EX! x.P(x)) <-> (EX! x.Q(x))" - (fn prems => - [ (REPEAT (eresolve_tac [ex1E, spec RS mp] 1 ORELSE ares_tac [iffI,ex1I] 1 - ORELSE mp_tac 1 - ORELSE iff_tac prems 1)) ]); -*) - -(*** Equality rules ***) - -val refl = ieqI; - -val subst = prove_goal IFOLP.thy "[| p:a=b; q:P(a) |] ==> ?p : P(b)" - (fn [prem1,prem2] => [ rtac (prem2 RS rev_mp) 1, (rtac (prem1 RS ieqE) 1), - rtac impI 1, atac 1 ]); - -val sym = prove_goal IFOLP.thy "q:a=b ==> ?c:b=a" - (fn [major] => [ (rtac (major RS subst) 1), (rtac refl 1) ]); - -val trans = prove_goal IFOLP.thy "[| p:a=b; q:b=c |] ==> ?d:a=c" - (fn [prem1,prem2] => [ (rtac (prem2 RS subst) 1), (rtac prem1 1) ]); - -(** ~ b=a ==> ~ a=b **) -val not_sym = prove_goal IFOLP.thy "p:~ b=a ==> ?q:~ a=b" - (fn [prem] => [ (rtac (prem RS contrapos) 1), (etac sym 1) ]); - -(*calling "standard" reduces maxidx to 0*) -val ssubst = standard (sym RS subst); - -(*A special case of ex1E that would otherwise need quantifier expansion*) -val ex1_equalsE = prove_goal IFOLP.thy - "[| p:EX! x.P(x); q:P(a); r:P(b) |] ==> ?d:a=b" - (fn prems => - [ (cut_facts_tac prems 1), - (etac ex1E 1), - (rtac trans 1), - (rtac sym 2), - (REPEAT (eresolve_tac [asm_rl, spec RS mp] 1)) ]); - -(** Polymorphic congruence rules **) - -val subst_context = prove_goal IFOLP.thy - "[| p:a=b |] ==> ?d:t(a)=t(b)" - (fn prems=> - [ (resolve_tac (prems RL [ssubst]) 1), - (resolve_tac [refl] 1) ]); - -val subst_context2 = prove_goal IFOLP.thy - "[| p:a=b; q:c=d |] ==> ?p:t(a,c)=t(b,d)" - (fn prems=> - [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); - -val subst_context3 = prove_goal IFOLP.thy - "[| p:a=b; q:c=d; r:e=f |] ==> ?p:t(a,c,e)=t(b,d,f)" - (fn prems=> - [ (EVERY1 (map rtac ((prems RL [ssubst]) @ [refl]))) ]); - -(*Useful with eresolve_tac for proving equalties from known equalities. - a = b - | | - c = d *) -val box_equals = prove_goal IFOLP.thy - "[| p:a=b; q:a=c; r:b=d |] ==> ?p:c=d" - (fn prems=> - [ (resolve_tac [trans] 1), - (resolve_tac [trans] 1), - (resolve_tac [sym] 1), - (REPEAT (resolve_tac prems 1)) ]); - -(*Dual of box_equals: for proving equalities backwards*) -val simp_equals = prove_goal IFOLP.thy - "[| p:a=c; q:b=d; r:c=d |] ==> ?p:a=b" - (fn prems=> - [ (resolve_tac [trans] 1), - (resolve_tac [trans] 1), - (REPEAT (resolve_tac (prems @ (prems RL [sym])) 1)) ]); - -(** Congruence rules for predicate letters **) - -val pred1_cong = prove_goal IFOLP.thy - "p:a=a' ==> ?p:P(a) <-> P(a')" - (fn prems => - [ (cut_facts_tac prems 1), - (rtac iffI 1), - (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); - -val pred2_cong = prove_goal IFOLP.thy - "[| p:a=a'; q:b=b' |] ==> ?p:P(a,b) <-> P(a',b')" - (fn prems => - [ (cut_facts_tac prems 1), - (rtac iffI 1), - (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); - -val pred3_cong = prove_goal IFOLP.thy - "[| p:a=a'; q:b=b'; r:c=c' |] ==> ?p:P(a,b,c) <-> P(a',b',c')" - (fn prems => - [ (cut_facts_tac prems 1), - (rtac iffI 1), - (DEPTH_SOLVE (eresolve_tac [asm_rl, subst, ssubst] 1)) ]); - -(*special cases for free variables P, Q, R, S -- up to 3 arguments*) - -val pred_congs = - flat (map (fn c => - map (fn th => read_instantiate [("P",c)] th) - [pred1_cong,pred2_cong,pred3_cong]) - (explode"PQRS")); - -(*special case for the equality predicate!*) -val eq_cong = read_instantiate [("P","op =")] pred2_cong; - - -(*** Simplifications of assumed implications. - Roy Dyckhoff has proved that conj_impE, disj_impE, and imp_impE - used with mp_tac (restricted to atomic formulae) is COMPLETE for - intuitionistic propositional logic. See - R. Dyckhoff, Contraction-free sequent calculi for intuitionistic logic - (preprint, University of St Andrews, 1991) ***) - -val conj_impE = prove_goal IFOLP.thy - "[| p:(P&Q)-->S; !!x.x:P-->(Q-->S) ==> q(x):R |] ==> ?p:R" - (fn major::prems=> - [ (REPEAT (ares_tac ([conjI, impI, major RS mp]@prems) 1)) ]); - -val disj_impE = prove_goal IFOLP.thy - "[| p:(P|Q)-->S; !!x y.[| x:P-->S; y:Q-->S |] ==> q(x,y):R |] ==> ?p:R" - (fn major::prems=> - [ (DEPTH_SOLVE (ares_tac ([disjI1, disjI2, impI, major RS mp]@prems) 1)) ]); - -(*Simplifies the implication. Classical version is stronger. - Still UNSAFE since Q must be provable -- backtracking needed. *) -val imp_impE = prove_goal IFOLP.thy - "[| p:(P-->Q)-->S; !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q; !!x.x:S ==> r(x):R |] ==> \ -\ ?p:R" - (fn major::prems=> - [ (REPEAT (ares_tac ([impI, major RS mp]@prems) 1)) ]); - -(*Simplifies the implication. Classical version is stronger. - Still UNSAFE since ~P must be provable -- backtracking needed. *) -val not_impE = prove_goal IFOLP.thy - "[| p:~P --> S; !!y.y:P ==> q(y):False; !!y.y:S ==> r(y):R |] ==> ?p:R" - (fn major::prems=> - [ (REPEAT (ares_tac ([notI, impI, major RS mp]@prems) 1)) ]); - -(*Simplifies the implication. UNSAFE. *) -val iff_impE = prove_goal IFOLP.thy - "[| p:(P<->Q)-->S; !!x y.[| x:P; y:Q-->S |] ==> q(x,y):Q; \ -\ !!x y.[| x:Q; y:P-->S |] ==> r(x,y):P; !!x.x:S ==> s(x):R |] ==> ?p:R" - (fn major::prems=> - [ (REPEAT (ares_tac ([iffI, impI, major RS mp]@prems) 1)) ]); - -(*What if (ALL x.~~P(x)) --> ~~(ALL x.P(x)) is an assumption? UNSAFE*) -val all_impE = prove_goal IFOLP.thy - "[| p:(ALL x.P(x))-->S; !!x.q:P(x); !!y.y:S ==> r(y):R |] ==> ?p:R" - (fn major::prems=> - [ (REPEAT (ares_tac ([allI, impI, major RS mp]@prems) 1)) ]); - -(*Unsafe: (EX x.P(x))-->S is equivalent to ALL x.P(x)-->S. *) -val ex_impE = prove_goal IFOLP.thy - "[| p:(EX x.P(x))-->S; !!y.y:P(a)-->S ==> q(y):R |] ==> ?p:R" - (fn major::prems=> - [ (REPEAT (ares_tac ([exI, impI, major RS mp]@prems) 1)) ]); - -end; - -open IFOLP_Lemmas; -