diff -r 78b7010db847 -r 816d8f6513be src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy --- a/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy Thu Apr 13 15:01:45 2000 +0200 +++ b/src/HOL/Real/HahnBanach/HahnBanachSupLemmas.thy Thu Apr 13 15:01:50 2000 +0200 @@ -437,16 +437,16 @@ txt{* We have to show that $h$ is multiplicative. *}; - thus "h (a <*> x) = a * h x"; + thus "h (a (*) x) = a * h x"; proof (elim exE conjE); fix H' h'; assume "x:H'" and b: "graph H' h' <= graph H h" and "is_linearform H' h'" "is_subspace H' E"; - have "h' (a <*> x) = a * h' x"; + have "h' (a (*) x) = a * h' x"; by (rule linearform_mult); also; have "h' x = h x"; ..; - also; have "a <*> x : H'"; ..; - with b; have "h' (a <*> x) = h (a <*> x)"; ..; + also; have "a (*) x : H'"; ..; + with b; have "h' (a (*) x) = h (a (*) x)"; ..; finally; show ?thesis; .; qed; qed; @@ -507,7 +507,7 @@ show ?thesis; proof; - show "<0> : F"; ..; + show "00 : F"; ..; show "F <= H"; proof (rule graph_extD2); show "graph F f <= graph H h"; @@ -518,10 +518,10 @@ fix x y; assume "x:F" "y:F"; show "x + y : F"; by (simp!); qed; - show "ALL x:F. ALL a. a <*> x : F"; + show "ALL x:F. ALL a. a (*) x : F"; proof (intro ballI allI); fix x a; assume "x:F"; - show "a <*> x : F"; by (simp!); + show "a (*) x : F"; by (simp!); qed; qed; qed; @@ -542,10 +542,10 @@ txt {* The $\zero$ element is in $H$, as $F$ is a subset of $H$: *}; - have "<0> : F"; ..; + have "00 : F"; ..; also; have "is_subspace F H"; by (rule sup_supF); hence "F <= H"; ..; - finally; show "<0> : H"; .; + finally; show "00 : H"; .; txt{* $H$ is a subset of $E$: *}; @@ -588,7 +588,7 @@ txt{* $H$ is closed under scalar multiplication: *}; - show "ALL x:H. ALL a. a <*> x : H"; + show "ALL x:H. ALL a. a (*) x : H"; proof (intro ballI allI); fix x a; assume "x:H"; have "EX H' h'. x:H' & graph H' h' <= graph H h @@ -596,11 +596,11 @@ & is_subspace F H' & graph F f <= graph H' h' & (ALL x:H'. h' x <= p x)"; by (rule some_H'h'); - thus "a <*> x : H"; + thus "a (*) x : H"; proof (elim exE conjE); fix H' h'; assume "x:H'" "is_subspace H' E" "graph H' h' <= graph H h"; - have "a <*> x : H'"; ..; + have "a (*) x : H'"; ..; also; have "H' <= H"; ..; finally; show ?thesis; .; qed;