diff -r 47aa9df578ea -r 8263d0b50e12 doc-src/IsarRef/hol.tex --- a/doc-src/IsarRef/hol.tex Wed Aug 04 18:20:05 1999 +0200 +++ b/doc-src/IsarRef/hol.tex Wed Aug 04 18:20:24 1999 +0200 @@ -23,11 +23,11 @@ actual HOL type constructor. \item [$\isarkeyword{typedef}~(\vec\alpha)t = A$] sets up a goal stating non-emptiness of the set $A$. After finishing the proof, the theory will be - augmented by a Gordon/HOL-style type definitions. See \cite{isabelle-HOL} + augmented by a Gordon/HOL-style type definition. See \cite{isabelle-HOL} for more information. Note that user-level work usually does not directly refer to the HOL $\isarkeyword{typedef}$ primitive, but uses more advanced - packages such as $\isarkeyword{record}$ (\S\ref{sec:record}) or - $\isarkeyword{datatype}$ (\S\ref{sec:datatype}). + packages such as $\isarkeyword{record}$ (see \S\ref{sec:record}) or + $\isarkeyword{datatype}$ (see \S\ref{sec:datatype}). \end{descr} @@ -52,7 +52,7 @@ defines extensible record type $(\vec\alpha)t$, derived from the optional parent record $\tau$ by adding new field components $\vec c :: \vec\sigma$. See \cite{isabelle-HOL,NaraschewskiW-TPHOLs98} for more information only - simply-typed records. + simply-typed extensible records. \end{descr} @@ -68,12 +68,12 @@ \railterm{repdatatype} \begin{rail} - 'datatype' (parname? typespec infix? \\ '=' (cons + '|') + 'and') + 'datatype' (parname? typespec infix? \\ '=' (constructor + '|') + 'and') ; repdatatype (name * ) \\ 'distinct' thmrefs 'inject' thmrefs 'induction' thmrefs ; - cons: name (type * ) mixfix? comment? + constructor: name (type * ) mixfix? comment? ; \end{rail} @@ -136,7 +136,7 @@ \section{Proof by induction} -%FIXME induct proof method +FIXME induct proof method %%% Local Variables: