diff -r c33b542394f3 -r 8279a25ad0ae src/HOL/Nominal/Examples/Crary.thy --- a/src/HOL/Nominal/Examples/Crary.thy Wed Mar 28 18:25:23 2007 +0200 +++ b/src/HOL/Nominal/Examples/Crary.thy Wed Mar 28 19:16:11 2007 +0200 @@ -32,7 +32,7 @@ fixes T::"ty" and pi::"name prm" shows "pi\T = T" - by (induct T rule: ty.induct_weak) (simp_all) + by (induct T rule: ty.weak_induct) (simp_all) lemma fresh_ty[simp]: fixes x::"name" @@ -43,7 +43,7 @@ lemma ty_cases: fixes T::ty shows "(\ T\<^isub>1 T\<^isub>2. T=T\<^isub>1\T\<^isub>2) \ T=TUnit \ T=TBase" -by (induct T rule:ty.induct_weak) (auto) +by (induct T rule:ty.weak_induct) (auto) instance ty :: size .. @@ -399,11 +399,11 @@ using a apply(induct) apply(rule QAN_Reduce) -apply(rule whr_def_eqvt) +apply(rule whr_def.eqvt) apply(assumption)+ apply(rule QAN_Normal) apply(auto) -apply(drule_tac pi="rev pi" in whr_def_eqvt) +apply(drule_tac pi="rev pi" in whr_def.eqvt) apply(perm_simp) done @@ -494,7 +494,7 @@ obtain y where fs2: "y\(\,t,u)" and "(y,T\<^isub>1)#\ \ App t (Var y) \ App u (Var y) : T\<^isub>2" using h by auto then have "([(x,y)]\((y,T\<^isub>1)#\)) \ [(x,y)]\ App t (Var y) \ [(x,y)]\ App u (Var y) : T\<^isub>2" - using alg_equiv_eqvt[simplified] by blast + using alg_equiv.eqvt[simplified] by blast then show ?thesis using fs fs2 by (perm_simp) qed