diff -r 29800666e526 -r 842917225d56 src/HOL/Divides.thy --- a/src/HOL/Divides.thy Tue Feb 23 15:37:18 2016 +0100 +++ b/src/HOL/Divides.thy Tue Feb 23 16:25:08 2016 +0100 @@ -1002,7 +1002,7 @@ assume "m \ 0" hence "\a b. divmod_nat_rel n q (a, b) \ divmod_nat_rel (m * n) (m * q) (a, m * b)" unfolding divmod_nat_rel_def - by (auto split: split_if_asm, simp_all add: algebra_simps) + by (auto split: if_split_asm, simp_all add: algebra_simps) moreover from divmod_nat_rel have "divmod_nat_rel n q (n div q, n mod q)" . ultimately have "divmod_nat_rel (m * n) (m * q) (n div q, m * (n mod q))" . thus "(m * n) div (m * q) = n div q" by (rule div_nat_unique) @@ -1660,7 +1660,7 @@ lemma unique_quotient: "divmod_int_rel a b (q, r) \ divmod_int_rel a b (q', r') \ q = q'" -apply (simp add: divmod_int_rel_def linorder_neq_iff split: split_if_asm) +apply (simp add: divmod_int_rel_def linorder_neq_iff split: if_split_asm) apply (blast intro: order_antisym dest: order_eq_refl [THEN unique_quotient_lemma] order_eq_refl [THEN unique_quotient_lemma_neg] sym)+ @@ -2072,7 +2072,7 @@ ==> divmod_int_rel a (b * c) (q div c, b*(q mod c) + r)" by (auto simp add: mult.assoc divmod_int_rel_def linorder_neq_iff zero_less_mult_iff distrib_left [symmetric] - zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: split_if_asm) + zmult2_lemma_aux1 zmult2_lemma_aux2 zmult2_lemma_aux3 zmult2_lemma_aux4 mult_less_0_iff split: if_split_asm) lemma zdiv_zmult2_eq: fixes a b c :: int