diff -r 29800666e526 -r 842917225d56 src/HOL/Library/Countable_Set.thy --- a/src/HOL/Library/Countable_Set.thy Tue Feb 23 15:37:18 2016 +0100 +++ b/src/HOL/Library/Countable_Set.thy Tue Feb 23 16:25:08 2016 +0100 @@ -94,7 +94,7 @@ unfolding from_nat_into_def[abs_def] using to_nat_on_finite[of S] apply (subst bij_betw_cong) - apply (split split_if) + apply (split if_split) apply (simp add: bij_betw_def) apply (auto cong: bij_betw_cong intro: bij_betw_inv_into to_nat_on_finite) @@ -303,7 +303,7 @@ assumes "countable X" obtains F where "\i. F i \ X" "\i. F i \ F (Suc i)" "\i. finite (F i)" "(\i. F i) = X" proof - show thesis apply (rule that[of "\i. if X = {} then {} else from_nat_into X ` {..i}"]) - apply (auto simp: image_iff Ball_def intro: from_nat_into split: split_if_asm) + apply (auto simp: image_iff Ball_def intro: from_nat_into split: if_split_asm) proof - fix x n assume "x \ X" "\i m. m \ i \ x \ from_nat_into X m" with from_nat_into_surj[OF \countable X\ \x \ X\]