diff -r 29800666e526 -r 842917225d56 src/HOL/Map.thy --- a/src/HOL/Map.thy Tue Feb 23 15:37:18 2016 +0100 +++ b/src/HOL/Map.thy Tue Feb 23 16:25:08 2016 +0100 @@ -358,10 +358,10 @@ by (simp add: restrict_map_def) lemma ran_restrictD: "y \ ran (m|`A) \ \x\A. m x = Some y" -by (auto simp: restrict_map_def ran_def split: split_if_asm) +by (auto simp: restrict_map_def ran_def split: if_split_asm) lemma dom_restrict [simp]: "dom (m|`A) = dom m \ A" -by (auto simp: restrict_map_def dom_def split: split_if_asm) +by (auto simp: restrict_map_def dom_def split: if_split_asm) lemma restrict_upd_same [simp]: "m(x\y)|`(-{x}) = m|`(-{x})" by (rule ext) (auto simp: restrict_map_def) @@ -429,7 +429,7 @@ apply (induct xs arbitrary: x y ys f) apply simp apply (case_tac ys) - apply (auto split: split_if simp: fun_upd_twist) + apply (auto split: if_split simp: fun_upd_twist) done lemma map_upds_twist [simp]: @@ -691,7 +691,7 @@ lemma dom_eq_singleton_conv: "dom f = {x} \ (\v. f = [x \ v])" proof(rule iffI) assume "\v. f = [x \ v]" - thus "dom f = {x}" by(auto split: split_if_asm) + thus "dom f = {x}" by(auto split: if_split_asm) next assume "dom f = {x}" then obtain v where "f x = Some v" by auto