diff -r 00b59ba22c01 -r 882b80bd10c8 src/HOL/Analysis/Uniform_Limit.thy --- a/src/HOL/Analysis/Uniform_Limit.thy Tue Mar 25 21:34:36 2025 +0000 +++ b/src/HOL/Analysis/Uniform_Limit.thy Wed Mar 26 21:11:04 2025 +0000 @@ -41,6 +41,9 @@ "(\e. e > 0 \ \\<^sub>F n in F. \x\S. dist (f n x) (l x) < e) \ uniform_limit S f l F" by (simp add: uniform_limit_iff) +lemma uniform_limit_singleton [simp]: "uniform_limit {x} f g F \ ((\n. f n x) \ g x) F" + by (simp add: uniform_limit_iff tendsto_iff) + lemma uniform_limit_sequentially_iff: "uniform_limit S f l sequentially \ (\e>0. \N. \n\N. \x \ S. dist (f n x) (l x) < e)" unfolding uniform_limit_iff eventually_sequentially .. @@ -71,6 +74,19 @@ by eventually_elim (use \ l in blast) qed +lemma uniform_limit_compose': + assumes "uniform_limit A f g F" and "h \ B \ A" + shows "uniform_limit B (\n x. f n (h x)) (\x. g (h x)) F" + unfolding uniform_limit_iff +proof (intro strip) + fix e :: real + assume e: "e > 0" + with assms(1) have "\\<^sub>F n in F. \x\A. dist (f n x) (g x) < e" + by (auto simp: uniform_limit_iff) + thus "\\<^sub>F n in F. \x\B. dist (f n (h x)) (g (h x)) < e" + by eventually_elim (use assms(2) in blast) +qed + lemma metric_uniform_limit_imp_uniform_limit: assumes f: "uniform_limit S f a F" assumes le: "eventually (\x. \y\S. dist (g x y) (b y) \ dist (f x y) (a y)) F" @@ -982,7 +998,7 @@ shows "continuous_on (cball \ r) (\x. suminf (\i. a i * (x - \) ^ i))" apply (rule uniform_limit_theorem [OF _ powser_uniform_limit]) apply (rule eventuallyI continuous_intros assms)+ -apply (simp add:) +apply auto done lemma powser_continuous_sums: