diff -r 26c0ccf17f31 -r 8893e0ed263a src/HOL/Complex_Analysis/Contour_Integration.thy --- a/src/HOL/Complex_Analysis/Contour_Integration.thy Mon May 31 20:27:45 2021 +0000 +++ b/src/HOL/Complex_Analysis/Contour_Integration.thy Thu Jun 03 10:47:20 2021 +0100 @@ -68,8 +68,8 @@ text\Show that we can forget about the localized derivative.\ lemma has_integral_localized_vector_derivative: - "((\x. f (g x) * vector_derivative g (at x within {a..b})) has_integral i) {a..b} \ - ((\x. f (g x) * vector_derivative g (at x)) has_integral i) {a..b}" + "((\x. f (g x) * vector_derivative p (at x within {a..b})) has_integral i) {a..b} \ + ((\x. f (g x) * vector_derivative p (at x)) has_integral i) {a..b}" proof - have *: "{a..b} - {a,b} = interior {a..b}" by (simp add: atLeastAtMost_diff_ends) @@ -78,8 +78,8 @@ qed lemma integrable_on_localized_vector_derivative: - "(\x. f (g x) * vector_derivative g (at x within {a..b})) integrable_on {a..b} \ - (\x. f (g x) * vector_derivative g (at x)) integrable_on {a..b}" + "(\x. f (g x) * vector_derivative p (at x within {a..b})) integrable_on {a..b} \ + (\x. f (g x) * vector_derivative p (at x)) integrable_on {a..b}" by (simp add: integrable_on_def has_integral_localized_vector_derivative) lemma has_contour_integral: