diff -r febb8e5d2a9d -r 890d736b93a5 src/HOL/Auth/Guard/Guard.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Auth/Guard/Guard.thy Wed Aug 21 15:53:30 2002 +0200 @@ -0,0 +1,312 @@ +(****************************************************************************** +date: january 2002 +author: Frederic Blanqui +email: blanqui@lri.fr +webpage: http://www.lri.fr/~blanqui/ + +University of Cambridge, Computer Laboratory +William Gates Building, JJ Thomson Avenue +Cambridge CB3 0FD, United Kingdom +******************************************************************************) + +header{*Protocol-Independent Confidentiality Theorem on Nonces*} + +theory Guard = Analz + Extensions: + +(****************************************************************************** +messages where all the occurrences of Nonce n are +in a sub-message of the form Crypt (invKey K) X with K:Ks +******************************************************************************) + +consts guard :: "nat => key set => msg set" + +inductive "guard n Ks" +intros +No_Nonce [intro]: "Nonce n ~:parts {X} ==> X:guard n Ks" +Guard_Nonce [intro]: "invKey K:Ks ==> Crypt K X:guard n Ks" +Crypt [intro]: "X:guard n Ks ==> Crypt K X:guard n Ks" +Pair [intro]: "[| X:guard n Ks; Y:guard n Ks |] ==> {|X,Y|}:guard n Ks" + +subsection{*basic facts about @{term guard}*} + +lemma Key_is_guard [iff]: "Key K:guard n Ks" +by auto + +lemma Agent_is_guard [iff]: "Agent A:guard n Ks" +by auto + +lemma Number_is_guard [iff]: "Number r:guard n Ks" +by auto + +lemma Nonce_notin_guard: "X:guard n Ks ==> X ~= Nonce n" +by (erule guard.induct, auto) + +lemma Nonce_notin_guard_iff [iff]: "Nonce n ~:guard n Ks" +by (auto dest: Nonce_notin_guard) + +lemma guard_has_Crypt [rule_format]: "X:guard n Ks ==> Nonce n:parts {X} +--> (EX K Y. Crypt K Y:kparts {X} & Nonce n:parts {Y})" +by (erule guard.induct, auto) + +lemma Nonce_notin_kparts_msg: "X:guard n Ks ==> Nonce n ~:kparts {X}" +by (erule guard.induct, auto) + +lemma Nonce_in_kparts_imp_no_guard: "Nonce n:kparts H +==> EX X. X:H & X ~:guard n Ks" +apply (drule in_kparts, clarify) +apply (rule_tac x=X in exI, clarify) +by (auto dest: Nonce_notin_kparts_msg) + +lemma guard_kparts [rule_format]: "X:guard n Ks ==> +Y:kparts {X} --> Y:guard n Ks" +by (erule guard.induct, auto) + +lemma guard_Crypt: "[| Crypt K Y:guard n Ks; K ~:invKey`Ks |] ==> Y:guard n Ks" +by (ind_cases "Crypt K Y:guard n Ks", auto) + +lemma guard_MPair [iff]: "({|X,Y|}:guard n Ks) = (X:guard n Ks & Y:guard n Ks)" +by (auto, (ind_cases "{|X,Y|}:guard n Ks", auto)+) + +lemma guard_not_guard [rule_format]: "X:guard n Ks ==> +Crypt K Y:kparts {X} --> Nonce n:kparts {Y} --> Y ~:guard n Ks" +by (erule guard.induct, auto dest: guard_kparts) + +lemma guard_extand: "[| X:guard n Ks; Ks <= Ks' |] ==> X:guard n Ks'" +by (erule guard.induct, auto) + +subsection{*guarded sets*} + +constdefs Guard :: "nat => key set => msg set => bool" +"Guard n Ks H == ALL X. X:H --> X:guard n Ks" + +subsection{*basic facts about @{term Guard}*} + +lemma Guard_empty [iff]: "Guard n Ks {}" +by (simp add: Guard_def) + +lemma notin_parts_Guard [intro]: "Nonce n ~:parts G ==> Guard n Ks G" +apply (unfold Guard_def, clarify) +apply (subgoal_tac "Nonce n ~:parts {X}") +by (auto dest: parts_sub) + +lemma Nonce_notin_kparts [simplified]: "Guard n Ks H ==> Nonce n ~:kparts H" +by (auto simp: Guard_def dest: in_kparts Nonce_notin_kparts_msg) + +lemma Guard_must_decrypt: "[| Guard n Ks H; Nonce n:analz H |] ==> +EX K Y. Crypt K Y:kparts H & Key (invKey K):kparts H" +apply (drule_tac P="%G. Nonce n:G" in analz_pparts_kparts_substD, simp) +by (drule must_decrypt, auto dest: Nonce_notin_kparts) + +lemma Guard_kparts [intro]: "Guard n Ks H ==> Guard n Ks (kparts H)" +by (auto simp: Guard_def dest: in_kparts guard_kparts) + +lemma Guard_mono: "[| Guard n Ks H; G <= H |] ==> Guard n Ks G" +by (auto simp: Guard_def) + +lemma Guard_insert [iff]: "Guard n Ks (insert X H) += (Guard n Ks H & X:guard n Ks)" +by (auto simp: Guard_def) + +lemma Guard_Un [iff]: "Guard n Ks (G Un H) = (Guard n Ks G & Guard n Ks H)" +by (auto simp: Guard_def) + +lemma Guard_synth [intro]: "Guard n Ks G ==> Guard n Ks (synth G)" +by (auto simp: Guard_def, erule synth.induct, auto) + +lemma Guard_analz [intro]: "[| Guard n Ks G; ALL K. K:Ks --> Key K ~:analz G |] +==> Guard n Ks (analz G)" +apply (auto simp: Guard_def) +apply (erule analz.induct, auto) +by (ind_cases "Crypt K Xa:guard n Ks", auto) + +lemma in_Guard [dest]: "[| X:G; Guard n Ks G |] ==> X:guard n Ks" +by (auto simp: Guard_def) + +lemma in_synth_Guard: "[| X:synth G; Guard n Ks G |] ==> X:guard n Ks" +by (drule Guard_synth, auto) + +lemma in_analz_Guard: "[| X:analz G; Guard n Ks G; +ALL K. K:Ks --> Key K ~:analz G |] ==> X:guard n Ks" +by (drule Guard_analz, auto) + +lemma Guard_keyset [simp]: "keyset G ==> Guard n Ks G" +by (auto simp: Guard_def) + +lemma Guard_Un_keyset: "[| Guard n Ks G; keyset H |] ==> Guard n Ks (G Un H)" +by auto + +lemma in_Guard_kparts: "[| X:G; Guard n Ks G; Y:kparts {X} |] ==> Y:guard n Ks" +by blast + +lemma in_Guard_kparts_neq: "[| X:G; Guard n Ks G; Nonce n':kparts {X} |] +==> n ~= n'" +by (blast dest: in_Guard_kparts) + +lemma in_Guard_kparts_Crypt: "[| X:G; Guard n Ks G; is_MPair X; +Crypt K Y:kparts {X}; Nonce n:kparts {Y} |] ==> invKey K:Ks" +apply (drule in_Guard, simp) +apply (frule guard_not_guard, simp+) +apply (drule guard_kparts, simp) +by (ind_cases "Crypt K Y:guard n Ks", auto) + +lemma Guard_extand: "[| Guard n Ks G; Ks <= Ks' |] ==> Guard n Ks' G" +by (auto simp: Guard_def dest: guard_extand) + +lemma guard_invKey [rule_format]: "[| X:guard n Ks; Nonce n:kparts {Y} |] ==> +Crypt K Y:kparts {X} --> invKey K:Ks" +by (erule guard.induct, auto) + +lemma Crypt_guard_invKey [rule_format]: "[| Crypt K Y:guard n Ks; +Nonce n:kparts {Y} |] ==> invKey K:Ks" +by (auto dest: guard_invKey) + +subsection{*set obtained by decrypting a message*} + +syntax decrypt :: "msg set => key => msg => msg set" + +translations "decrypt H K Y" => "insert Y (H - {Crypt K Y})" + +lemma analz_decrypt: "[| Crypt K Y:H; Key (invKey K):H; Nonce n:analz H |] +==> Nonce n:analz (decrypt H K Y)" +by (drule_tac P="%H. Nonce n:analz H" in insert_Diff_substD, simp_all) + +lemma "[| finite H; Crypt K Y:H |] ==> finite (decrypt H K Y)" +by auto + +lemma parts_decrypt: "[| Crypt K Y:H; X:parts (decrypt H K Y) |] ==> X:parts H" +by (erule parts.induct, auto intro: parts.Fst parts.Snd parts.Body) + +subsection{*number of Crypt's in a message*} + +consts crypt_nb :: "msg => nat" + +recdef crypt_nb "measure size" +"crypt_nb (Crypt K X) = Suc (crypt_nb X)" +"crypt_nb {|X,Y|} = crypt_nb X + crypt_nb Y" +"crypt_nb X = 0" (* otherwise *) + +subsection{*basic facts about @{term crypt_nb}*} + +lemma non_empty_crypt_msg: "Crypt K Y:parts {X} ==> 0 < crypt_nb X" +by (induct X, simp_all, safe, simp_all) + +subsection{*number of Crypt's in a message list*} + +consts cnb :: "msg list => nat" + +recdef cnb "measure size" +"cnb [] = 0" +"cnb (X#l) = crypt_nb X + cnb l" + +subsection{*basic facts about @{term cnb}*} + +lemma cnb_app [simp]: "cnb (l @ l') = cnb l + cnb l'" +by (induct l, auto) + +lemma mem_cnb_minus: "x mem l ==> cnb l = crypt_nb x + (cnb l - crypt_nb x)" +by (induct l, auto) + +lemmas mem_cnb_minus_substI = mem_cnb_minus [THEN ssubst] + +lemma cnb_minus [simp]: "x mem l ==> cnb (minus l x) = cnb l - crypt_nb x" +apply (induct l, auto) +by (erule_tac l1=list and x1=x in mem_cnb_minus_substI, simp) + +lemma parts_cnb: "Z:parts (set l) ==> +cnb l = (cnb l - crypt_nb Z) + crypt_nb Z" +by (erule parts.induct, auto simp: in_set_conv_decomp) + +lemma non_empty_crypt: "Crypt K Y:parts (set l) ==> 0 < cnb l" +by (induct l, auto dest: non_empty_crypt_msg parts_insert_substD) + +subsection{*list of kparts*} + +lemma kparts_msg_set: "EX l. kparts {X} = set l & cnb l = crypt_nb X" +apply (induct X, simp_all) +apply (rule_tac x="[Agent agent]" in exI, simp) +apply (rule_tac x="[Number nat]" in exI, simp) +apply (rule_tac x="[Nonce nat]" in exI, simp) +apply (rule_tac x="[Key nat]" in exI, simp) +apply (rule_tac x="[Hash msg]" in exI, simp) +apply (clarify, rule_tac x="l@la" in exI, simp) +by (clarify, rule_tac x="[Crypt nat msg]" in exI, simp) + +lemma kparts_set: "EX l'. kparts (set l) = set l' & cnb l' = cnb l" +apply (induct l) +apply (rule_tac x="[]" in exI, simp, clarsimp) +apply (subgoal_tac "EX l. kparts {a} = set l & cnb l = crypt_nb a", clarify) +apply (rule_tac x="l@l'" in exI, simp) +apply (rule kparts_insert_substI, simp) +by (rule kparts_msg_set) + +subsection{*list corresponding to "decrypt"*} + +constdefs decrypt' :: "msg list => key => msg => msg list" +"decrypt' l K Y == Y # minus l (Crypt K Y)" + +declare decrypt'_def [simp] + +subsection{*basic facts about @{term decrypt'}*} + +lemma decrypt_minus: "decrypt (set l) K Y <= set (decrypt' l K Y)" +by (induct l, auto) + +subsection{*if the analyse of a finite guarded set gives n then it must also gives +one of the keys of Ks*} + +lemma Guard_invKey_by_list [rule_format]: "ALL l. cnb l = p +--> Guard n Ks (set l) --> Nonce n:analz (set l) +--> (EX K. K:Ks & Key K:analz (set l))" +apply (induct p) +(* case p=0 *) +apply (clarify, drule Guard_must_decrypt, simp, clarify) +apply (drule kparts_parts, drule non_empty_crypt, simp) +(* case p>0 *) +apply (clarify, frule Guard_must_decrypt, simp, clarify) +apply (drule_tac P="%G. Nonce n:G" in analz_pparts_kparts_substD, simp) +apply (frule analz_decrypt, simp_all) +apply (subgoal_tac "EX l'. kparts (set l) = set l' & cnb l' = cnb l", clarsimp) +apply (drule_tac G="insert Y (set l' - {Crypt K Y})" +and H="set (decrypt' l' K Y)" in analz_sub, rule decrypt_minus) +apply (rule_tac analz_pparts_kparts_substI, simp) +apply (case_tac "K:invKey`Ks") +(* K:invKey`Ks *) +apply (clarsimp, blast) +(* K ~:invKey`Ks *) +apply (subgoal_tac "Guard n Ks (set (decrypt' l' K Y))") +apply (drule_tac x="decrypt' l' K Y" in spec, simp add: set_mem_eq) +apply (subgoal_tac "Crypt K Y:parts (set l)") +apply (drule parts_cnb, rotate_tac -1, simp) +apply (clarify, drule_tac X="Key Ka" and H="insert Y (set l')" in analz_sub) +apply (rule insert_mono, rule set_minus) +apply (simp add: analz_insertD, blast) +(* Crypt K Y:parts (set l) *) +apply (blast dest: kparts_parts) +(* Guard n Ks (set (decrypt' l' K Y)) *) +apply (rule_tac H="insert Y (set l')" in Guard_mono) +apply (subgoal_tac "Guard n Ks (set l')", simp) +apply (rule_tac K=K in guard_Crypt, simp add: Guard_def, simp) +apply (drule_tac t="set l'" in sym, simp) +apply (rule Guard_kparts, simp, simp) +apply (rule_tac B="set l'" in subset_trans, rule set_minus, blast) +by (rule kparts_set) + +lemma Guard_invKey_finite: "[| Nonce n:analz G; Guard n Ks G; finite G |] +==> EX K. K:Ks & Key K:analz G" +apply (drule finite_list, clarify) +by (rule Guard_invKey_by_list, auto) + +lemma Guard_invKey: "[| Nonce n:analz G; Guard n Ks G |] +==> EX K. K:Ks & Key K:analz G" +by (auto dest: analz_needs_only_finite Guard_invKey_finite) + +subsection{*if the analyse of a finite guarded set and a (possibly infinite) set of keys +gives n then it must also gives Ks*} + +lemma Guard_invKey_keyset: "[| Nonce n:analz (G Un H); Guard n Ks G; finite G; +keyset H |] ==> EX K. K:Ks & Key K:analz (G Un H)" +apply (frule_tac P="%G. Nonce n:G" and G2=G in analz_keyset_substD, simp_all) +apply (drule_tac G="G Un (H Int keysfor G)" in Guard_invKey_finite) +by (auto simp: Guard_def intro: analz_sub) + +end \ No newline at end of file