diff -r 46be26e02456 -r 899c9c4e4a4c src/HOL/Multivariate_Analysis/Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Fri Dec 14 14:46:01 2012 +0100 +++ b/src/HOL/Multivariate_Analysis/Euclidean_Space.thy Fri Dec 14 15:46:01 2012 +0100 @@ -23,24 +23,24 @@ assumes euclidean_all_zero_iff: "(\u\Basis. inner x u = 0) \ (x = 0)" - -- "FIXME: make this a separate definition" - fixes dimension :: "'a itself \ nat" - assumes dimension_def: "dimension TYPE('a) = card Basis" - - -- "FIXME: eventually basis function can be removed" - fixes basis :: "nat \ 'a" - assumes image_basis: "basis ` {.. nat" where + "dimension TYPE('a) \ card (Basis :: 'a set)" syntax "_type_dimension" :: "type => nat" ("(1DIM/(1'(_')))") translations "DIM('t)" == "CONST dimension (TYPE('t))" -lemma (in euclidean_space) norm_Basis: "u \ Basis \ norm u = 1" +lemma (in euclidean_space) norm_Basis[simp]: "u \ Basis \ norm u = 1" unfolding norm_eq_sqrt_inner by (simp add: inner_Basis) +lemma (in euclidean_space) inner_same_Basis[simp]: "u \ Basis \ inner u u = 1" + by (simp add: inner_Basis) + +lemma (in euclidean_space) inner_not_same_Basis: "u \ Basis \ v \ Basis \ u \ v \ inner u v = 0" + by (simp add: inner_Basis) + lemma (in euclidean_space) sgn_Basis: "u \ Basis \ sgn u = u" - unfolding sgn_div_norm by (simp add: norm_Basis scaleR_one) + unfolding sgn_div_norm by (simp add: scaleR_one) lemma (in euclidean_space) Basis_zero [simp]: "0 \ Basis" proof @@ -51,184 +51,45 @@ lemma (in euclidean_space) nonzero_Basis: "u \ Basis \ u \ 0" by clarsimp -text {* Lemmas related to @{text basis} function. *} - -lemma (in euclidean_space) euclidean_all_zero: - "(\i (x = 0)" - using euclidean_all_zero_iff [of x, folded image_basis] - unfolding ball_simps by (simp add: Ball_def inner_commute) - -lemma (in euclidean_space) basis_zero [simp]: - "DIM('a) \ i \ basis i = 0" - using basis_finite by auto +lemma (in euclidean_space) SOME_Basis: "(SOME i. i \ Basis) \ Basis" + by (metis ex_in_conv nonempty_Basis someI_ex) -lemma (in euclidean_space) DIM_positive [intro]: "0 < DIM('a)" - unfolding dimension_def by (simp add: card_gt_0_iff) - -lemma (in euclidean_space) basis_inj [simp, intro]: "inj_on basis {.. Basis \ i < DIM('a)" - by (cases "i < DIM('a)", simp add: image_basis [symmetric], simp) - -lemma (in euclidean_space) Basis_elim: - assumes "u \ Basis" obtains i where "i < DIM('a)" and "u = basis i" - using assms unfolding image_basis [symmetric] by fast +lemma (in euclidean_space) inner_setsum_left_Basis[simp]: + "b \ Basis \ inner (\i\Basis. f i *\<^sub>R i) b = f b" + by (simp add: inner_setsum_left inner_Basis if_distrib setsum_cases) -lemma (in euclidean_space) basis_orthonormal: - "\ij i < DIM('a) then 1 else 0)" -proof (cases "(i < DIM('a) \ j < DIM('a))") - case False - hence "inner (basis i) (basis j) = 0" by auto - thus ?thesis using False by auto -next - case True thus ?thesis using basis_orthonormal by auto -qed - -lemma (in euclidean_space) basis_eq_0_iff [simp]: - "basis i = 0 \ DIM('a) \ i" +lemma (in euclidean_space) euclidean_eqI: + assumes b: "\b. b \ Basis \ inner x b = inner y b" shows "x = y" proof - - have "inner (basis i) (basis i) = 0 \ DIM('a) \ i" - by (simp add: dot_basis) - thus ?thesis by simp + from b have "\b\Basis. inner (x - y) b = 0" + by (simp add: inner_diff_left) + then show "x = y" + by (simp add: euclidean_all_zero_iff) qed -lemma (in euclidean_space) norm_basis [simp]: - "norm (basis i) = (if i < DIM('a) then 1 else 0)" - unfolding norm_eq_sqrt_inner dot_basis by simp - -lemma (in euclidean_space) basis_neq_0 [intro]: - assumes "i 0" - using assms by simp - -subsubsection {* Projecting components *} - -definition (in euclidean_space) euclidean_component (infixl "$$" 90) - where "x $$ i = inner (basis i) x" - -lemma bounded_linear_euclidean_component: - "bounded_linear (\x. euclidean_component x i)" - unfolding euclidean_component_def - by (rule bounded_linear_inner_right) - -lemmas tendsto_euclidean_component [tendsto_intros] = - bounded_linear.tendsto [OF bounded_linear_euclidean_component] - -lemmas isCont_euclidean_component [simp] = - bounded_linear.isCont [OF bounded_linear_euclidean_component] - -lemma euclidean_component_zero [simp]: "0 $$ i = 0" - unfolding euclidean_component_def by (rule inner_zero_right) - -lemma euclidean_component_add [simp]: "(x + y) $$ i = x $$ i + y $$ i" - unfolding euclidean_component_def by (rule inner_add_right) - -lemma euclidean_component_diff [simp]: "(x - y) $$ i = x $$ i - y $$ i" - unfolding euclidean_component_def by (rule inner_diff_right) - -lemma euclidean_component_minus [simp]: "(- x) $$ i = - (x $$ i)" - unfolding euclidean_component_def by (rule inner_minus_right) - -lemma euclidean_component_scaleR [simp]: "(scaleR a x) $$ i = a * (x $$ i)" - unfolding euclidean_component_def by (rule inner_scaleR_right) - -lemma euclidean_component_setsum [simp]: "(\x\A. f x) $$ i = (\x\A. f x $$ i)" - unfolding euclidean_component_def by (rule inner_setsum_right) - -lemma euclidean_eqI: - fixes x y :: "'a::euclidean_space" - assumes "\i. i < DIM('a) \ x $$ i = y $$ i" shows "x = y" -proof - - from assms have "\i (\i (\b\Basis. inner x b = inner y b)" by (auto intro: euclidean_eqI) -lemma (in euclidean_space) basis_component [simp]: - "basis i $$ j = (if i = j \ i < DIM('a) then 1 else 0)" - unfolding euclidean_component_def dot_basis by auto - -lemma (in euclidean_space) basis_at_neq_0 [intro]: - "i < DIM('a) \ basis i $$ i \ 0" - by simp - -lemma (in euclidean_space) euclidean_component_ge [simp]: - assumes "i \ DIM('a)" shows "x $$ i = 0" - unfolding euclidean_component_def basis_zero[OF assms] by simp +lemma (in euclidean_space) euclidean_representation_setsum: + "(\i\Basis. f i *\<^sub>R i) = b \ (\i\Basis. f i = inner b i)" + by (subst euclidean_eq_iff) simp -lemmas euclidean_simps = - euclidean_component_add - euclidean_component_diff - euclidean_component_scaleR - euclidean_component_minus - euclidean_component_setsum - basis_component - -lemma euclidean_representation: - fixes x :: "'a::euclidean_space" - shows "x = (\iR basis i)" - apply (rule euclidean_eqI) - apply (simp add: if_distrib setsum_delta cong: if_cong) - done - -subsubsection {* Binder notation for vectors *} - -definition (in euclidean_space) Chi (binder "\\ " 10) where - "(\\ i. f i) = (\iR basis i)" +lemma (in euclidean_space) euclidean_representation: "(\b\Basis. inner x b *\<^sub>R b) = x" + unfolding euclidean_representation_setsum by simp -lemma euclidean_lambda_beta [simp]: - "((\\ i. f i)::'a::euclidean_space) $$ j = (if j < DIM('a) then f j else 0)" - by (auto simp: Chi_def if_distrib setsum_cases intro!: setsum_cong) - -lemma euclidean_lambda_beta': - "j < DIM('a) \ ((\\ i. f i)::'a::euclidean_space) $$ j = f j" - by simp - -lemma euclidean_lambda_beta'':"(\j < DIM('a::euclidean_space). P j (((\\ i. f i)::'a) $$ j)) \ - (\j < DIM('a::euclidean_space). P j (f j))" by auto - -lemma euclidean_beta_reduce[simp]: - "(\\ i. x $$ i) = (x::'a::euclidean_space)" - by (simp add: euclidean_eq) - -lemma euclidean_lambda_beta_0[simp]: - "((\\ i. f i)::'a::euclidean_space) $$ 0 = f 0" - by (simp add: DIM_positive) +lemma (in euclidean_space) choice_Basis_iff: + fixes P :: "'a \ real \ bool" + shows "(\i\Basis. \x. P i x) \ (\x. \i\Basis. P i (inner x i))" + unfolding bchoice_iff +proof safe + fix f assume "\i\Basis. P i (f i)" + then show "\x. \i\Basis. P i (inner x i)" + by (auto intro!: exI[of _ "\i\Basis. f i *\<^sub>R i"]) +qed auto -lemma euclidean_inner: - "inner x (y::'a) = (\ii. dist (x $$ i) (y $$ i)) {..x$$i\ \ norm (x::'a::euclidean_space)" - unfolding euclidean_component_def - by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp - -lemma dist_nth_le: "dist (x $$ i) (y $$ i) \ dist x (y::'a::euclidean_space)" - unfolding euclidean_dist_l2 [where 'a='a] - by (cases "i < DIM('a)", rule member_le_setL2, auto) +lemma DIM_positive: "0 < DIM('a::euclidean_space)" + by (simp add: card_gt_0_iff) subsection {* Subclass relationships *} @@ -239,11 +100,13 @@ assume "open {x}" then obtain e where "0 < e" and e: "\y. dist y x < e \ y = x" unfolding open_dist by fast - def y \ "x + scaleR (e/2) (sgn (basis 0))" + def y \ "x + scaleR (e/2) (SOME b. b \ Basis)" + have [simp]: "(SOME b. b \ Basis) \ Basis" + by (rule someI_ex) (auto simp: ex_in_conv) from `0 < e` have "y \ x" - unfolding y_def by (simp add: sgn_zero_iff DIM_positive) + unfolding y_def by (auto intro!: nonzero_Basis) from `0 < e` have "dist y x < e" - unfolding y_def by (simp add: dist_norm norm_sgn) + unfolding y_def by (simp add: dist_norm norm_Basis) from `y \ x` and `dist y x < e` show "False" using e by simp qed @@ -256,23 +119,17 @@ instantiation real :: euclidean_space begin -definition - "Basis = {1::real}" - -definition - "dimension (t::real itself) = 1" - -definition [simp]: - "basis i = (if i = 0 then 1 else (0::real))" - -lemma DIM_real [simp]: "DIM(real) = 1" - by (rule dimension_real_def) +definition + [simp]: "Basis = {1::real}" instance by default (auto simp add: Basis_real_def) end +lemma DIM_real[simp]: "DIM(real) = 1" + by simp + subsubsection {* Type @{typ complex} *} instantiation complex :: euclidean_space @@ -281,20 +138,13 @@ definition Basis_complex_def: "Basis = {1, ii}" -definition - "dimension (t::complex itself) = 2" - -definition - "basis i = (if i = 0 then 1 else if i = 1 then ii else 0)" - instance - by default (auto simp add: Basis_complex_def dimension_complex_def - basis_complex_def intro: complex_eqI split: split_if_asm) + by default (auto simp add: Basis_complex_def intro: complex_eqI split: split_if_asm) end lemma DIM_complex[simp]: "DIM(complex) = 2" - by (rule dimension_complex_def) + unfolding Basis_complex_def by simp subsubsection {* Type @{typ "'a \ 'b"} *} @@ -304,12 +154,6 @@ definition "Basis = (\u. (u, 0)) ` Basis \ (\v. (0, v)) ` Basis" -definition - "dimension (t::('a \ 'b) itself) = DIM('a) + DIM('b)" - -definition - "basis i = (if i < DIM('a) then (basis i, 0) else (0, basis (i - DIM('a))))" - instance proof show "(Basis :: ('a \ 'b) set) \ {}" unfolding Basis_prod_def by simp @@ -327,20 +171,12 @@ show "(\u\Basis. inner x u = 0) \ x = 0" unfolding Basis_prod_def ball_Un ball_simps by (simp add: inner_prod_def prod_eq_iff euclidean_all_zero_iff) -next - show "DIM('a \ 'b) = card (Basis :: ('a \ 'b) set)" - unfolding dimension_prod_def Basis_prod_def - by (simp add: card_Un_disjoint disjoint_iff_not_equal - card_image inj_on_def dimension_def) -next - show "basis ` {.. 'b)} = (Basis :: ('a \ 'b) set)" - by (auto simp add: Basis_prod_def dimension_prod_def basis_prod_def - image_def elim!: Basis_elim) -next - show "basis ` {DIM('a \ 'b)..} = {0::('a \ 'b)}" - by (auto simp add: dimension_prod_def basis_prod_def prod_eq_iff image_def) qed +lemma DIM_prod[simp]: "DIM('a \ 'b) = DIM('a) + DIM('b)" + unfolding Basis_prod_def + by (subst card_Un_disjoint) (auto intro!: card_image arg_cong2[where f="op +"] inj_onI) + end end