diff -r 82dd239e0f65 -r 8b1c0d434824 src/HOL/Word/WordArith.thy --- a/src/HOL/Word/WordArith.thy Tue Jan 15 16:19:21 2008 +0100 +++ b/src/HOL/Word/WordArith.thy Tue Jan 15 16:19:23 2008 +0100 @@ -61,17 +61,17 @@ lemmas word_0_wi_Pls = word_0_wi [folded Pls_def] lemmas word_0_no = word_0_wi_Pls [folded word_no_wi] -lemma int_one_bin: "(1 :: int) == (Numeral.Pls BIT bit.B1)" +lemma int_one_bin: "(1 :: int) == (Int.Pls BIT bit.B1)" unfolding Pls_def Bit_def by auto lemma word_1_no: - "(1 :: 'a :: len0 word) == number_of (Numeral.Pls BIT bit.B1)" + "(1 :: 'a :: len0 word) == number_of (Int.Pls BIT bit.B1)" unfolding word_1_wi word_number_of_def int_one_bin by auto lemma word_m1_wi: "-1 == word_of_int -1" by (rule word_number_of_alt) -lemma word_m1_wi_Min: "-1 = word_of_int Numeral.Min" +lemma word_m1_wi_Min: "-1 = word_of_int Int.Min" by (simp add: word_m1_wi number_of_eq) lemma word_0_bl: "of_bl [] = 0" @@ -169,8 +169,8 @@ wi_hom_add: "word_of_int a + word_of_int b = word_of_int (a + b)" and wi_hom_mult: "word_of_int a * word_of_int b = word_of_int (a * b)" and wi_hom_neg: "- word_of_int a = word_of_int (- a)" and - wi_hom_succ: "word_succ (word_of_int a) = word_of_int (Numeral.succ a)" and - wi_hom_pred: "word_pred (word_of_int a) = word_of_int (Numeral.pred a)" + wi_hom_succ: "word_succ (word_of_int a) = word_of_int (Int.succ a)" and + wi_hom_pred: "word_pred (word_of_int a) = word_of_int (Int.pred a)" by (auto simp: word_arith_wis arths) lemmas wi_hom_syms = wi_homs [symmetric] @@ -255,15 +255,15 @@ unfolding word_pred_def number_of_eq by (simp add : pred_def word_no_wi) -lemma word_pred_0_Min: "word_pred 0 = word_of_int Numeral.Min" +lemma word_pred_0_Min: "word_pred 0 = word_of_int Int.Min" by (simp add: word_pred_0_n1 number_of_eq) -lemma word_m1_Min: "- 1 = word_of_int Numeral.Min" +lemma word_m1_Min: "- 1 = word_of_int Int.Min" unfolding Min_def by (simp only: word_of_int_hom_syms) lemma succ_pred_no [simp]: - "word_succ (number_of bin) = number_of (Numeral.succ bin) & - word_pred (number_of bin) = number_of (Numeral.pred bin)" + "word_succ (number_of bin) = number_of (Int.succ bin) & + word_pred (number_of bin) = number_of (Int.pred bin)" unfolding word_number_of_def by (simp add : new_word_of_int_homs) lemma word_sp_01 [simp] : @@ -797,7 +797,7 @@ which requires word length >= 1, ie 'a :: len word *) lemma zero_bintrunc: "iszero (number_of x :: 'a :: len word) = - (bintrunc (len_of TYPE('a)) x = Numeral.Pls)" + (bintrunc (len_of TYPE('a)) x = Int.Pls)" apply (unfold iszero_def word_0_wi word_no_wi) apply (rule word_ubin.norm_eq_iff [symmetric, THEN trans]) apply (simp add : Pls_def [symmetric])