diff -r cfc11af6174a -r 8c9278991d9c src/Sequents/modal.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Sequents/modal.ML Tue Jul 27 19:00:55 1999 +0200 @@ -0,0 +1,93 @@ +(* Title: LK/modal.ML + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1992 University of Cambridge + +Simple modal reasoner +*) + + +signature MODAL_PROVER_RULE = +sig + val rewrite_rls : thm list + val safe_rls : thm list + val unsafe_rls : thm list + val bound_rls : thm list + val aside_rls : thm list +end; + +signature MODAL_PROVER = +sig + val rule_tac : thm list -> int ->tactic + val step_tac : int -> tactic + val solven_tac : int -> int -> tactic + val solve_tac : int -> tactic +end; + +functor Modal_ProverFun (Modal_Rule: MODAL_PROVER_RULE) : MODAL_PROVER = +struct +local open Modal_Rule +in + +(*Returns the list of all formulas in the sequent*) +fun forms_of_seq (Const("SeqO",_) $ P $ u) = P :: forms_of_seq u + | forms_of_seq (H $ u) = forms_of_seq u + | forms_of_seq _ = []; + +(*Tests whether two sequences (left or right sides) could be resolved. + seqp is a premise (subgoal), seqc is a conclusion of an object-rule. + Assumes each formula in seqc is surrounded by sequence variables + -- checks that each concl formula looks like some subgoal formula.*) +fun could_res (seqp,seqc) = + forall (fn Qc => exists (fn Qp => could_unify (Qp,Qc)) + (forms_of_seq seqp)) + (forms_of_seq seqc); + +(*Tests whether two sequents G|-H could be resolved, comparing each side.*) +fun could_resolve_seq (prem,conc) = + case (prem,conc) of + (_ $ Abs(_,_,leftp) $ Abs(_,_,rightp), + _ $ Abs(_,_,leftc) $ Abs(_,_,rightc)) => + could_res (leftp,leftc) andalso could_res (rightp,rightc) + | _ => false; + +(*Like filt_resolve_tac, using could_resolve_seq + Much faster than resolve_tac when there are many rules. + Resolve subgoal i using the rules, unless more than maxr are compatible. *) +fun filseq_resolve_tac rules maxr = SUBGOAL(fn (prem,i) => + let val rls = filter_thms could_resolve_seq (maxr+1, prem, rules) + in if length rls > maxr then no_tac else resolve_tac rls i + end); + +fun fresolve_tac rls n = filseq_resolve_tac rls 999 n; + +(* NB No back tracking possible with aside rules *) + +fun aside_tac n = DETERM(REPEAT (filt_resolve_tac aside_rls 999 n)); +fun rule_tac rls n = fresolve_tac rls n THEN aside_tac n; + +val fres_safe_tac = fresolve_tac safe_rls; +val fres_unsafe_tac = fresolve_tac unsafe_rls THEN' aside_tac; +val fres_bound_tac = fresolve_tac bound_rls; + +fun UPTOGOAL n tf = let fun tac i = if i tac (nprems_of st) st end; + +(* Depth first search bounded by d *) +fun solven_tac d n state = state |> + (if d<0 then no_tac + else if (nprems_of state = 0) then all_tac + else (DETERM(fres_safe_tac n) THEN UPTOGOAL n (solven_tac d)) ORELSE + ((fres_unsafe_tac n THEN UPTOGOAL n (solven_tac d)) APPEND + (fres_bound_tac n THEN UPTOGOAL n (solven_tac (d-1))))); + +fun solve_tac d = rewrite_goals_tac rewrite_rls THEN solven_tac d 1; + +fun step_tac n = + COND (has_fewer_prems 1) all_tac + (DETERM(fres_safe_tac n) ORELSE + (fres_unsafe_tac n APPEND fres_bound_tac n)); + +end; +end;