diff -r 308e74afab83 -r 8d0c2d74ad63 src/HOL/Library/Countable_Set.thy --- a/src/HOL/Library/Countable_Set.thy Mon Sep 20 13:51:32 2021 +0200 +++ b/src/HOL/Library/Countable_Set.thy Mon Sep 20 13:52:09 2021 +0200 @@ -377,7 +377,8 @@ lemma infinite_countable_subset': assumes X: "infinite X" shows "\C\X. countable C \ infinite C" proof - - from infinite_countable_subset[OF X] guess f .. + obtain f :: "nat \ 'a" where "inj f" "range f \ X" + using infinite_countable_subset [OF X] by blast then show ?thesis by (intro exI[of _ "range f"]) (auto simp: range_inj_infinite) qed