diff -r a4b47c684445 -r 8d56461f85ec src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy --- a/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Sat Jun 25 13:21:27 2022 +0200 +++ b/src/HOL/Analysis/Nonnegative_Lebesgue_Integration.thy Sat Jun 25 13:34:41 2022 +0200 @@ -1383,7 +1383,7 @@ lemma nn_integral_monotone_convergence_INF_decseq: assumes f: "decseq f" and *: "\i. f i \ borel_measurable M" "(\\<^sup>+ x. f i x \M) < \" shows "(\\<^sup>+ x. (INF i. f i x) \M) = (INF i. integral\<^sup>N M (f i))" - using nn_integral_monotone_convergence_INF_AE[of f M i, OF _ *] f by (auto simp: decseq_Suc_iff le_fun_def) + using nn_integral_monotone_convergence_INF_AE[of f M i, OF _ *] f by (simp add: decseq_SucD le_funD) theorem nn_integral_liminf: fixes u :: "nat \ 'a \ ennreal" @@ -1464,7 +1464,7 @@ fix C :: "nat \ 'b" assume C: "decseq C" then show "(\\<^sup>+ y. f y (Inf (C ` UNIV)) \M) = (INF i. \\<^sup>+ y. f y (C i) \M)" using inf_continuous_mono[OF f] bnd - by (auto simp add: inf_continuousD[OF f C] fun_eq_iff antimono_def mono_def le_fun_def less_top + by (auto simp add: inf_continuousD[OF f C] fun_eq_iff monotone_def le_fun_def less_top intro!: nn_integral_monotone_convergence_INF_decseq) qed