diff -r d37f66755f47 -r 8d7e9fce8c50 src/HOL/UNITY/Rename.thy --- a/src/HOL/UNITY/Rename.thy Tue Jan 28 22:53:39 2003 +0100 +++ b/src/HOL/UNITY/Rename.thy Wed Jan 29 11:02:08 2003 +0100 @@ -6,11 +6,388 @@ Renaming of state sets *) -Rename = Extend + +theory Rename = Extend: constdefs rename :: "['a => 'b, 'a program] => 'b program" "rename h == extend (%(x,u::unit). h x)" +declare image_inv_f_f [simp] image_surj_f_inv_f [simp] + +declare Extend.intro [simp,intro] + +lemma good_map_bij [simp,intro]: "bij h ==> good_map (%(x,u). h x)" +apply (rule good_mapI) +apply (unfold bij_def inj_on_def surj_def, auto) +done + +lemma fst_o_inv_eq_inv: "bij h ==> fst (inv (%(x,u). h x) s) = inv h s" +apply (unfold bij_def split_def, clarify) +apply (subgoal_tac "surj (%p. h (fst p))") + prefer 2 apply (simp add: surj_def) +apply (erule injD) +apply (simp (no_asm_simp) add: surj_f_inv_f) +apply (erule surj_f_inv_f) +done + +lemma mem_rename_set_iff: "bij h ==> z : h`A = (inv h z : A)" +by (force simp add: bij_is_inj bij_is_surj [THEN surj_f_inv_f]) + + +lemma extend_set_eq_image [simp]: "extend_set (%(x,u). h x) A = h`A" +by (force simp add: extend_set_def) + +lemma Init_rename [simp]: "Init (rename h F) = h`(Init F)" +by (simp add: rename_def) + + +(*** inverse properties ***) + +lemma extend_set_inv: + "bij h + ==> extend_set (%(x,u::'c). inv h x) = project_set (%(x,u::'c). h x)" +apply (unfold bij_def) +apply (rule ext) +apply (force simp add: extend_set_def project_set_def surj_f_inv_f) +done + +(** for "rename" (programs) **) + +lemma bij_extend_act_eq_project_act: "bij h + ==> extend_act (%(x,u::'c). h x) = project_act (%(x,u::'c). inv h x)" +apply (rule ext) +apply (force simp add: extend_act_def project_act_def bij_def surj_f_inv_f) +done + +lemma bij_extend_act: "bij h ==> bij (extend_act (%(x,u::'c). h x))" +apply (rule bijI) +apply (rule Extend.inj_extend_act) +apply (auto simp add: bij_extend_act_eq_project_act) +apply (rule surjI) +apply (rule Extend.extend_act_inverse) +apply (blast intro: bij_imp_bij_inv good_map_bij) +done + +lemma bij_project_act: "bij h ==> bij (project_act (%(x,u::'c). h x))" +apply (frule bij_imp_bij_inv [THEN bij_extend_act]) +apply (simp add: bij_extend_act_eq_project_act bij_imp_bij_inv inv_inv_eq) +done + +lemma bij_inv_project_act_eq: "bij h ==> inv (project_act (%(x,u::'c). inv h x)) = + project_act (%(x,u::'c). h x)" +apply (simp (no_asm_simp) add: bij_extend_act_eq_project_act [symmetric]) +apply (rule surj_imp_inv_eq) +apply (blast intro: bij_extend_act bij_is_surj) +apply (simp (no_asm_simp) add: Extend.extend_act_inverse) +done + +lemma extend_inv: "bij h + ==> extend (%(x,u::'c). inv h x) = project (%(x,u::'c). h x) UNIV" +apply (frule bij_imp_bij_inv) +apply (rule ext) +apply (rule program_equalityI) + apply (simp (no_asm_simp) add: extend_set_inv) + apply (simp add: Extend.project_act_Id Extend.Acts_extend + insert_Id_image_Acts bij_extend_act_eq_project_act inv_inv_eq) +apply (simp add: Extend.AllowedActs_extend Extend.AllowedActs_project + bij_project_act bij_vimage_eq_inv_image bij_inv_project_act_eq) +done + +lemma rename_inv_rename [simp]: "bij h ==> rename (inv h) (rename h F) = F" +by (simp add: rename_def extend_inv Extend.extend_inverse) + +lemma rename_rename_inv [simp]: "bij h ==> rename h (rename (inv h) F) = F" +apply (frule bij_imp_bij_inv) +apply (erule inv_inv_eq [THEN subst], erule rename_inv_rename) +done + +lemma rename_inv_eq: "bij h ==> rename (inv h) = inv (rename h)" +by (rule inv_equality [symmetric], auto) + +(** (rename h) is bijective <=> h is bijective **) + +lemma bij_extend: "bij h ==> bij (extend (%(x,u::'c). h x))" +apply (rule bijI) +apply (blast intro: Extend.inj_extend) +apply (rule_tac f = "extend (% (x,u) . inv h x) " in surjI) +apply (subst inv_inv_eq [of h, symmetric], assumption) +apply (subst extend_inv, simp add: bij_imp_bij_inv) +apply (simp add: inv_inv_eq) +apply (rule Extend.extend_inverse) +apply (simp add: bij_imp_bij_inv) +done + +lemma bij_project: "bij h ==> bij (project (%(x,u::'c). h x) UNIV)" +apply (subst extend_inv [symmetric]) +apply (auto simp add: bij_imp_bij_inv bij_extend) +done + +lemma inv_project_eq: + "bij h + ==> inv (project (%(x,u::'c). h x) UNIV) = extend (%(x,u::'c). h x)" +apply (rule inj_imp_inv_eq) +apply (erule bij_project [THEN bij_is_inj]) +apply (simp (no_asm_simp) add: Extend.extend_inverse) +done + +lemma Allowed_rename [simp]: + "bij h ==> Allowed (rename h F) = rename h ` Allowed F" +apply (simp (no_asm_simp) add: rename_def Extend.Allowed_extend) +apply (subst bij_vimage_eq_inv_image) +apply (rule bij_project, blast) +apply (simp (no_asm_simp) add: inv_project_eq) +done + +lemma bij_rename: "bij h ==> bij (rename h)" +apply (simp (no_asm_simp) add: rename_def bij_extend) +done +lemmas surj_rename = bij_rename [THEN bij_is_surj, standard] + +lemma inj_rename_imp_inj: "inj (rename h) ==> inj h" +apply (unfold inj_on_def, auto) +apply (drule_tac x = "mk_program ({x}, {}, {}) " in spec) +apply (drule_tac x = "mk_program ({y}, {}, {}) " in spec) +apply (auto simp add: program_equality_iff rename_def extend_def) +done + +lemma surj_rename_imp_surj: "surj (rename h) ==> surj h" +apply (unfold surj_def, auto) +apply (drule_tac x = "mk_program ({y}, {}, {}) " in spec) +apply (auto simp add: program_equality_iff rename_def extend_def) +done + +lemma bij_rename_imp_bij: "bij (rename h) ==> bij h" +apply (unfold bij_def) +apply (simp (no_asm_simp) add: inj_rename_imp_inj surj_rename_imp_surj) +done + +lemma bij_rename_iff [simp]: "bij (rename h) = bij h" +by (blast intro: bij_rename bij_rename_imp_bij) + + +(*** the lattice operations ***) + +lemma rename_SKIP [simp]: "bij h ==> rename h SKIP = SKIP" +by (simp add: rename_def Extend.extend_SKIP) + +lemma rename_Join [simp]: + "bij h ==> rename h (F Join G) = rename h F Join rename h G" +by (simp add: rename_def Extend.extend_Join) + +lemma rename_JN [simp]: + "bij h ==> rename h (JOIN I F) = (JN i:I. rename h (F i))" +by (simp add: rename_def Extend.extend_JN) + + +(*** Strong Safety: co, stable ***) + +lemma rename_constrains: + "bij h ==> (rename h F : (h`A) co (h`B)) = (F : A co B)" +apply (unfold rename_def) +apply (subst extend_set_eq_image [symmetric])+ +apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_constrains]) +done + +lemma rename_stable: + "bij h ==> (rename h F : stable (h`A)) = (F : stable A)" +apply (simp add: stable_def rename_constrains) +done + +lemma rename_invariant: + "bij h ==> (rename h F : invariant (h`A)) = (F : invariant A)" +apply (simp add: invariant_def rename_stable bij_is_inj [THEN inj_image_subset_iff]) +done + +lemma rename_increasing: + "bij h ==> (rename h F : increasing func) = (F : increasing (func o h))" +apply (simp add: increasing_def rename_stable [symmetric] bij_image_Collect_eq bij_is_surj [THEN surj_f_inv_f]) +done + + +(*** Weak Safety: Co, Stable ***) + +lemma reachable_rename_eq: + "bij h ==> reachable (rename h F) = h ` (reachable F)" +apply (simp add: rename_def Extend.reachable_extend_eq) +done + +lemma rename_Constrains: + "bij h ==> (rename h F : (h`A) Co (h`B)) = (F : A Co B)" +by (simp add: Constrains_def reachable_rename_eq rename_constrains + bij_is_inj image_Int [symmetric]) + +lemma rename_Stable: + "bij h ==> (rename h F : Stable (h`A)) = (F : Stable A)" +by (simp add: Stable_def rename_Constrains) + +lemma rename_Always: "bij h ==> (rename h F : Always (h`A)) = (F : Always A)" +by (simp add: Always_def rename_Stable bij_is_inj [THEN inj_image_subset_iff]) + +lemma rename_Increasing: + "bij h ==> (rename h F : Increasing func) = (F : Increasing (func o h))" +by (simp add: Increasing_def rename_Stable [symmetric] bij_image_Collect_eq + bij_is_surj [THEN surj_f_inv_f]) + + +(*** Progress: transient, ensures ***) + +lemma rename_transient: + "bij h ==> (rename h F : transient (h`A)) = (F : transient A)" +apply (unfold rename_def) +apply (subst extend_set_eq_image [symmetric]) +apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_transient]) +done + +lemma rename_ensures: + "bij h ==> (rename h F : (h`A) ensures (h`B)) = (F : A ensures B)" +apply (unfold rename_def) +apply (subst extend_set_eq_image [symmetric])+ +apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_ensures]) +done + +lemma rename_leadsTo: + "bij h ==> (rename h F : (h`A) leadsTo (h`B)) = (F : A leadsTo B)" +apply (unfold rename_def) +apply (subst extend_set_eq_image [symmetric])+ +apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_leadsTo]) +done + +lemma rename_LeadsTo: + "bij h ==> (rename h F : (h`A) LeadsTo (h`B)) = (F : A LeadsTo B)" +apply (unfold rename_def) +apply (subst extend_set_eq_image [symmetric])+ +apply (erule good_map_bij [THEN Extend.intro, THEN Extend.extend_LeadsTo]) +done + +lemma rename_rename_guarantees_eq: + "bij h ==> (rename h F : (rename h ` X) guarantees + (rename h ` Y)) = + (F : X guarantees Y)" +apply (unfold rename_def) +apply (subst good_map_bij [THEN Extend.intro, THEN Extend.extend_guarantees_eq [symmetric]], assumption) +apply (simp (no_asm_simp) add: fst_o_inv_eq_inv o_def) +done + +lemma rename_guarantees_eq_rename_inv: + "bij h ==> (rename h F : X guarantees Y) = + (F : (rename (inv h) ` X) guarantees + (rename (inv h) ` Y))" +apply (subst rename_rename_guarantees_eq [symmetric], assumption) +apply (simp add: image_eq_UN o_def bij_is_surj [THEN surj_f_inv_f]) +done + +lemma rename_preserves: + "bij h ==> (rename h G : preserves v) = (G : preserves (v o h))" +apply (subst good_map_bij [THEN Extend.intro, THEN Extend.extend_preserves [symmetric]], assumption) +apply (simp add: o_def fst_o_inv_eq_inv rename_def bij_is_surj [THEN surj_f_inv_f]) +done + +lemma ok_rename_iff [simp]: "bij h ==> (rename h F ok rename h G) = (F ok G)" +by (simp add: Extend.ok_extend_iff rename_def) + +lemma OK_rename_iff [simp]: "bij h ==> OK I (%i. rename h (F i)) = (OK I F)" +by (simp add: Extend.OK_extend_iff rename_def) + + +(*** "image" versions of the rules, for lifting "guarantees" properties ***) + +(*All the proofs are similar. Better would have been to prove one + meta-theorem, but how can we handle the polymorphism? E.g. in + rename_constrains the two appearances of "co" have different types!*) +lemmas bij_eq_rename = surj_rename [THEN surj_f_inv_f, symmetric] + +lemma rename_image_constrains: + "bij h ==> rename h ` (A co B) = (h ` A) co (h`B)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_constrains) +done + +lemma rename_image_stable: "bij h ==> rename h ` stable A = stable (h ` A)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_stable) +done + +lemma rename_image_increasing: + "bij h ==> rename h ` increasing func = increasing (func o inv h)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_increasing o_def bij_is_inj) +done + +lemma rename_image_invariant: + "bij h ==> rename h ` invariant A = invariant (h ` A)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_invariant) +done + +lemma rename_image_Constrains: + "bij h ==> rename h ` (A Co B) = (h ` A) Co (h`B)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_Constrains) +done + +lemma rename_image_preserves: + "bij h ==> rename h ` preserves v = preserves (v o inv h)" +by (simp add: o_def rename_image_stable preserves_def bij_image_INT + bij_image_Collect_eq) + +lemma rename_image_Stable: + "bij h ==> rename h ` Stable A = Stable (h ` A)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_Stable) +done + +lemma rename_image_Increasing: + "bij h ==> rename h ` Increasing func = Increasing (func o inv h)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_Increasing o_def bij_is_inj) +done + +lemma rename_image_Always: "bij h ==> rename h ` Always A = Always (h ` A)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_Always) +done + +lemma rename_image_leadsTo: + "bij h ==> rename h ` (A leadsTo B) = (h ` A) leadsTo (h`B)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_leadsTo) +done + +lemma rename_image_LeadsTo: + "bij h ==> rename h ` (A LeadsTo B) = (h ` A) LeadsTo (h`B)" +apply auto + defer 1 + apply (rename_tac F) + apply (subgoal_tac "\G. F = rename h G") + apply (auto intro!: bij_eq_rename simp add: rename_LeadsTo) +done + end