diff -r d1694ef6e7a7 -r 8db1e960d636 doc-src/IsarRef/Thy/document/HOL_Specific.tex --- a/doc-src/IsarRef/Thy/document/HOL_Specific.tex Thu May 15 17:37:21 2008 +0200 +++ b/doc-src/IsarRef/Thy/document/HOL_Specific.tex Thu May 15 17:39:20 2008 +0200 @@ -30,8 +30,8 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{command}{typedecl}\mbox{\isa{\isacommand{typedecl}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{typedef}\mbox{\isa{\isacommand{typedef}}} & : & \isartrans{theory}{proof(prove)} \\ + \indexdef{HOL}{command}{typedecl}\hypertarget{command.HOL.typedecl}{\hyperlink{command.HOL.typedecl}{\mbox{\isa{\isacommand{typedecl}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{typedef}\hypertarget{command.HOL.typedef}{\hyperlink{command.HOL.typedef}{\mbox{\isa{\isacommand{typedef}}}}} & : & \isartrans{theory}{proof(prove)} \\ \end{matharray} \begin{rail} @@ -50,30 +50,30 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{typedecl}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}] is similar to the original \mbox{\isa{\isacommand{typedecl}}} of + \item [\hyperlink{command.HOL.typedecl}{\mbox{\isa{\isacommand{typedecl}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t{\isachardoublequote}}] is similar to the original \hyperlink{command.typedecl}{\mbox{\isa{\isacommand{typedecl}}}} of Isabelle/Pure (see \secref{sec:types-pure}), but also declares type arity \isa{{\isachardoublequote}t\ {\isacharcolon}{\isacharcolon}\ {\isacharparenleft}type{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ type{\isacharparenright}\ type{\isachardoublequote}}, making \isa{t} an actual HOL type constructor. %FIXME check, update - \item [\mbox{\isa{\isacommand{typedef}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isacharequal}\ A{\isachardoublequote}}] sets up a goal stating non-emptiness of the set \isa{A}. + \item [\hyperlink{command.HOL.typedef}{\mbox{\isa{\isacommand{typedef}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub n{\isacharparenright}\ t\ {\isacharequal}\ A{\isachardoublequote}}] sets up a goal stating non-emptiness of the set \isa{A}. After finishing the proof, the theory will be augmented by a Gordon/HOL-style type definition, which establishes a bijection between the representing set \isa{A} and the new type \isa{t}. - Technically, \mbox{\isa{\isacommand{typedef}}} defines both a type \isa{t} and a set (term constant) of the same name (an alternative base + Technically, \hyperlink{command.HOL.typedef}{\mbox{\isa{\isacommand{typedef}}}} defines both a type \isa{t} and a set (term constant) of the same name (an alternative base name may be given in parentheses). The injection from type to set is called \isa{Rep{\isacharunderscore}t}, its inverse \isa{Abs{\isacharunderscore}t} (this may be - changed via an explicit \mbox{\isa{\isakeyword{morphisms}}} declaration). + changed via an explicit \hyperlink{keyword.HOL.morphisms}{\mbox{\isa{\isakeyword{morphisms}}}} declaration). Theorems \isa{Rep{\isacharunderscore}t}, \isa{Rep{\isacharunderscore}t{\isacharunderscore}inverse}, and \isa{Abs{\isacharunderscore}t{\isacharunderscore}inverse} provide the most basic characterization as a corresponding injection/surjection pair (in both directions). Rules \isa{Rep{\isacharunderscore}t{\isacharunderscore}inject} and \isa{Abs{\isacharunderscore}t{\isacharunderscore}inject} provide a slightly more convenient view on the injectivity part, suitable for automated - proof tools (e.g.\ in \mbox{\isa{simp}} or \mbox{\isa{iff}} + proof tools (e.g.\ in \hyperlink{attribute.simp}{\mbox{\isa{simp}}} or \hyperlink{attribute.iff}{\mbox{\isa{iff}}} declarations). Rules \isa{Rep{\isacharunderscore}t{\isacharunderscore}cases}/\isa{Rep{\isacharunderscore}t{\isacharunderscore}induct}, and \isa{Abs{\isacharunderscore}t{\isacharunderscore}cases}/\isa{Abs{\isacharunderscore}t{\isacharunderscore}induct} provide alternative views on surjectivity; these are already declared as set or type rules for - the generic \mbox{\isa{cases}} and \mbox{\isa{induct}} methods. + the generic \hyperlink{method.cases}{\mbox{\isa{cases}}} and \hyperlink{method.induct}{\mbox{\isa{induct}}} methods. An alternative name may be specified in parentheses; the default is to use \isa{t} as indicated before. The ``\isa{{\isachardoublequote}{\isacharparenleft}open{\isacharparenright}{\isachardoublequote}}'' @@ -85,7 +85,7 @@ Note that raw type declarations are rarely used in practice; the main application is with experimental (or even axiomatic!) theory fragments. Instead of primitive HOL type definitions, user-level - theories usually refer to higher-level packages such as \mbox{\isa{\isacommand{record}}} (see \secref{sec:hol-record}) or \mbox{\isa{\isacommand{datatype}}} (see \secref{sec:hol-datatype}).% + theories usually refer to higher-level packages such as \hyperlink{command.HOL.record}{\mbox{\isa{\isacommand{record}}}} (see \secref{sec:hol-record}) or \hyperlink{command.HOL.datatype}{\mbox{\isa{\isacommand{datatype}}}} (see \secref{sec:hol-datatype}).% \end{isamarkuptext}% \isamarkuptrue% % @@ -95,7 +95,7 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \mbox{\isa{split{\isacharunderscore}format}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isaratt \\ + \hyperlink{attribute.HOL.split_format}{\mbox{\isa{split{\isacharunderscore}format}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isaratt \\ \end{matharray} \begin{rail} @@ -105,7 +105,7 @@ \begin{descr} - \item [\mbox{\isa{split{\isacharunderscore}format}}~\isa{{\isachardoublequote}p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub m\ {\isasymAND}\ {\isasymdots}\ {\isasymAND}\ q\isactrlsub {\isadigit{1}}\ {\isasymdots}\ q\isactrlsub n{\isachardoublequote}}] puts expressions of + \item [\hyperlink{attribute.HOL.split_format}{\mbox{\isa{split{\isacharunderscore}format}}}~\isa{{\isachardoublequote}p\isactrlsub {\isadigit{1}}\ {\isasymdots}\ p\isactrlsub m\ {\isasymAND}\ {\isasymdots}\ {\isasymAND}\ q\isactrlsub {\isadigit{1}}\ {\isasymdots}\ q\isactrlsub n{\isachardoublequote}}] puts expressions of low-level tuple types into canonical form as specified by the arguments given; the \isa{i}-th collection of arguments refers to occurrences in premise \isa{i} of the rule. The ``\isa{{\isachardoublequote}{\isacharparenleft}complete{\isacharparenright}{\isachardoublequote}}'' option causes \emph{all} arguments in function @@ -204,7 +204,7 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{command}{record}\mbox{\isa{\isacommand{record}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{record}\hypertarget{command.HOL.record}{\hyperlink{command.HOL.record}{\mbox{\isa{\isacommand{record}}}}} & : & \isartrans{theory}{theory} \\ \end{matharray} \begin{rail} @@ -214,7 +214,7 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{record}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t\ {\isacharequal}\ {\isasymtau}\ {\isacharplus}\ c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub n{\isachardoublequote}}] defines + \item [\hyperlink{command.HOL.record}{\mbox{\isa{\isacommand{record}}}}~\isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t\ {\isacharequal}\ {\isasymtau}\ {\isacharplus}\ c\isactrlsub {\isadigit{1}}\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub {\isadigit{1}}\ {\isasymdots}\ c\isactrlsub n\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub n{\isachardoublequote}}] defines extensible record type \isa{{\isachardoublequote}{\isacharparenleft}{\isasymalpha}\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymalpha}\isactrlsub m{\isacharparenright}\ t{\isachardoublequote}}, derived from the optional parent record \isa{{\isachardoublequote}{\isasymtau}{\isachardoublequote}} by adding new field components \isa{{\isachardoublequote}c\isactrlsub i\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}\isactrlsub i{\isachardoublequote}} etc. @@ -326,7 +326,7 @@ \item Standard conversions for selectors or updates applied to record constructor terms are made part of the default Simplifier context; thus proofs by reduction of basic operations merely require - the \mbox{\isa{simp}} method without further arguments. These rules + the \hyperlink{method.simp}{\mbox{\isa{simp}}} method without further arguments. These rules are available as \isa{{\isachardoublequote}t{\isachardot}simps{\isachardoublequote}}, too. \item Selectors applied to updated records are automatically reduced @@ -334,15 +334,15 @@ standard Simplifier setup. \item Inject equations of a form analogous to \isa{{\isachardoublequote}{\isacharparenleft}x{\isacharcomma}\ y{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x{\isacharprime}{\isacharcomma}\ y{\isacharprime}{\isacharparenright}\ {\isasymequiv}\ x\ {\isacharequal}\ x{\isacharprime}\ {\isasymand}\ y\ {\isacharequal}\ y{\isacharprime}{\isachardoublequote}} are declared to the Simplifier and Classical - Reasoner as \mbox{\isa{iff}} rules. These rules are available as + Reasoner as \hyperlink{attribute.iff}{\mbox{\isa{iff}}} rules. These rules are available as \isa{{\isachardoublequote}t{\isachardot}iffs{\isachardoublequote}}. \item The introduction rule for record equality analogous to \isa{{\isachardoublequote}x\ r\ {\isacharequal}\ x\ r{\isacharprime}\ {\isasymLongrightarrow}\ y\ r\ {\isacharequal}\ y\ r{\isacharprime}\ {\isasymdots}\ {\isasymLongrightarrow}\ r\ {\isacharequal}\ r{\isacharprime}{\isachardoublequote}} is declared to the Simplifier, - and as the basic rule context as ``\mbox{\isa{intro}}\isa{{\isachardoublequote}{\isacharquery}{\isachardoublequote}}''. + and as the basic rule context as ``\hyperlink{attribute.intro}{\mbox{\isa{intro}}}\isa{{\isachardoublequote}{\isacharquery}{\isachardoublequote}}''. The rule is called \isa{{\isachardoublequote}t{\isachardot}equality{\isachardoublequote}}. \item Representations of arbitrary record expressions as canonical - constructor terms are provided both in \mbox{\isa{cases}} and \mbox{\isa{induct}} format (cf.\ the generic proof methods of the same name, + constructor terms are provided both in \hyperlink{method.cases}{\mbox{\isa{cases}}} and \hyperlink{method.induct}{\mbox{\isa{induct}}} format (cf.\ the generic proof methods of the same name, \secref{sec:cases-induct}). Several variations are available, for fixed records, record schemes, more parts etc. @@ -364,8 +364,8 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{command}{datatype}\mbox{\isa{\isacommand{datatype}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{rep\_datatype}\mbox{\isa{\isacommand{rep{\isacharunderscore}datatype}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{datatype}\hypertarget{command.HOL.datatype}{\hyperlink{command.HOL.datatype}{\mbox{\isa{\isacommand{datatype}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{rep\_datatype}\hypertarget{command.HOL.rep_datatype}{\hyperlink{command.HOL.rep_datatype}{\mbox{\isa{\isacommand{rep{\isacharunderscore}datatype}}}}} & : & \isartrans{theory}{theory} \\ \end{matharray} \begin{rail} @@ -383,10 +383,10 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{datatype}}}] defines inductive datatypes in + \item [\hyperlink{command.HOL.datatype}{\mbox{\isa{\isacommand{datatype}}}}] defines inductive datatypes in HOL. - \item [\mbox{\isa{\isacommand{rep{\isacharunderscore}datatype}}}] represents existing types as + \item [\hyperlink{command.HOL.rep_datatype}{\mbox{\isa{\isacommand{rep{\isacharunderscore}datatype}}}}] represents existing types as inductive ones, generating the standard infrastructure of derived concepts (primitive recursion etc.). @@ -399,7 +399,7 @@ See \cite{isabelle-HOL} for more details on datatypes, but beware of the old-style theory syntax being used there! Apart from proper proof methods for case-analysis and induction, there are also - emulations of ML tactics \mbox{\isa{case{\isacharunderscore}tac}} and \mbox{\isa{induct{\isacharunderscore}tac}} available, see \secref{sec:hol-induct-tac}; these admit + emulations of ML tactics \hyperlink{method.HOL.case_tac}{\mbox{\isa{case{\isacharunderscore}tac}}} and \hyperlink{method.HOL.induct_tac}{\mbox{\isa{induct{\isacharunderscore}tac}}} available, see \secref{sec:hol-induct-tac}; these admit to refer directly to the internal structure of subgoals (including internally bound parameters).% \end{isamarkuptext}% @@ -411,10 +411,10 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{command}{primrec}\mbox{\isa{\isacommand{primrec}}} & : & \isarkeep{local{\dsh}theory} \\ - \indexdef{HOL}{command}{fun}\mbox{\isa{\isacommand{fun}}} & : & \isarkeep{local{\dsh}theory} \\ - \indexdef{HOL}{command}{function}\mbox{\isa{\isacommand{function}}} & : & \isartrans{local{\dsh}theory}{proof(prove)} \\ - \indexdef{HOL}{command}{termination}\mbox{\isa{\isacommand{termination}}} & : & \isartrans{local{\dsh}theory}{proof(prove)} \\ + \indexdef{HOL}{command}{primrec}\hypertarget{command.HOL.primrec}{\hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}}} & : & \isarkeep{local{\dsh}theory} \\ + \indexdef{HOL}{command}{fun}\hypertarget{command.HOL.fun}{\hyperlink{command.HOL.fun}{\mbox{\isa{\isacommand{fun}}}}} & : & \isarkeep{local{\dsh}theory} \\ + \indexdef{HOL}{command}{function}\hypertarget{command.HOL.function}{\hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}}} & : & \isartrans{local{\dsh}theory}{proof(prove)} \\ + \indexdef{HOL}{command}{termination}\hypertarget{command.HOL.termination}{\hyperlink{command.HOL.termination}{\mbox{\isa{\isacommand{termination}}}}} & : & \isartrans{local{\dsh}theory}{proof(prove)} \\ \end{matharray} \railalias{funopts}{function\_opts} %FIXME ?? @@ -436,10 +436,10 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{primrec}}}] defines primitive recursive + \item [\hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}}] defines primitive recursive functions over datatypes, see also \cite{isabelle-HOL}. - \item [\mbox{\isa{\isacommand{function}}}] defines functions by general + \item [\hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}}] defines functions by general wellfounded recursion. A detailed description with examples can be found in \cite{isabelle-function}. The function is specified by a set of (possibly conditional) recursive equations with arbitrary @@ -449,15 +449,15 @@ The defined function is considered partial, and the resulting simplification rules (named \isa{{\isachardoublequote}f{\isachardot}psimps{\isachardoublequote}}) and induction rule (named \isa{{\isachardoublequote}f{\isachardot}pinduct{\isachardoublequote}}) are guarded by a generated domain - predicate \isa{{\isachardoublequote}f{\isacharunderscore}dom{\isachardoublequote}}. The \mbox{\isa{\isacommand{termination}}} + predicate \isa{{\isachardoublequote}f{\isacharunderscore}dom{\isachardoublequote}}. The \hyperlink{command.HOL.termination}{\mbox{\isa{\isacommand{termination}}}} command can then be used to establish that the function is total. - \item [\mbox{\isa{\isacommand{fun}}}] is a shorthand notation for - ``\mbox{\isa{\isacommand{function}}}~\isa{{\isachardoublequote}{\isacharparenleft}sequential{\isacharparenright}{\isachardoublequote}}, followed by + \item [\hyperlink{command.HOL.fun}{\mbox{\isa{\isacommand{fun}}}}] is a shorthand notation for + ``\hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}}~\isa{{\isachardoublequote}{\isacharparenleft}sequential{\isacharparenright}{\isachardoublequote}}, followed by automated proof attempts regarding pattern matching and termination. See \cite{isabelle-function} for further details. - \item [\mbox{\isa{\isacommand{termination}}}~\isa{f}] commences a + \item [\hyperlink{command.HOL.termination}{\mbox{\isa{\isacommand{termination}}}}~\isa{f}] commences a termination proof for the previously defined function \isa{f}. If this is omitted, the command refers to the most recent function definition. After the proof is closed, the recursive equations and @@ -467,18 +467,18 @@ %FIXME check - Recursive definitions introduced by both the \mbox{\isa{\isacommand{primrec}}} and the \mbox{\isa{\isacommand{function}}} command accommodate + Recursive definitions introduced by both the \hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}} and the \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} command accommodate reasoning by induction (cf.\ \secref{sec:cases-induct}): rule \isa{{\isachardoublequote}c{\isachardot}induct{\isachardoublequote}} (where \isa{c} is the name of the function definition) refers to a specific induction rule, with parameters named according - to the user-specified equations. Case names of \mbox{\isa{\isacommand{primrec}}} are that of the datatypes involved, while those of - \mbox{\isa{\isacommand{function}}} are numbered (starting from 1). + to the user-specified equations. Case names of \hyperlink{command.HOL.primrec}{\mbox{\isa{\isacommand{primrec}}}} are that of the datatypes involved, while those of + \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} are numbered (starting from 1). The equations provided by these packages may be referred later as theorem list \isa{{\isachardoublequote}f{\isachardot}simps{\isachardoublequote}}, where \isa{f} is the (collective) name of the functions defined. Individual equations may be named explicitly as well. - The \mbox{\isa{\isacommand{function}}} command accepts the following + The \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} command accepts the following options. \begin{descr} @@ -518,9 +518,9 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{method}{pat\_completeness}\mbox{\isa{pat{\isacharunderscore}completeness}} & : & \isarmeth \\ - \indexdef{HOL}{method}{relation}\mbox{\isa{relation}} & : & \isarmeth \\ - \indexdef{HOL}{method}{lexicographic\_order}\mbox{\isa{lexicographic{\isacharunderscore}order}} & : & \isarmeth \\ + \indexdef{HOL}{method}{pat\_completeness}\hypertarget{method.HOL.pat_completeness}{\hyperlink{method.HOL.pat_completeness}{\mbox{\isa{pat{\isacharunderscore}completeness}}}} & : & \isarmeth \\ + \indexdef{HOL}{method}{relation}\hypertarget{method.HOL.relation}{\hyperlink{method.HOL.relation}{\mbox{\isa{relation}}}} & : & \isarmeth \\ + \indexdef{HOL}{method}{lexicographic\_order}\hypertarget{method.HOL.lexicographic_order}{\hyperlink{method.HOL.lexicographic_order}{\mbox{\isa{lexicographic{\isacharunderscore}order}}}} & : & \isarmeth \\ \end{matharray} \begin{rail} @@ -532,24 +532,24 @@ \begin{descr} - \item [\mbox{\isa{pat{\isacharunderscore}completeness}}] is a specialized method to + \item [\hyperlink{method.HOL.pat_completeness}{\mbox{\isa{pat{\isacharunderscore}completeness}}}] is a specialized method to solve goals regarding the completeness of pattern matching, as - required by the \mbox{\isa{\isacommand{function}}} package (cf.\ + required by the \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} package (cf.\ \cite{isabelle-function}). - \item [\mbox{\isa{relation}}~\isa{R}] introduces a termination + \item [\hyperlink{method.HOL.relation}{\mbox{\isa{relation}}}~\isa{R}] introduces a termination proof using the relation \isa{R}. The resulting proof state will contain goals expressing that \isa{R} is wellfounded, and that the arguments of recursive calls decrease with respect to \isa{R}. Usually, this method is used as the initial proof step of manual termination proofs. - \item [\mbox{\isa{lexicographic{\isacharunderscore}order}}] attempts a fully + \item [\hyperlink{method.HOL.lexicographic_order}{\mbox{\isa{lexicographic{\isacharunderscore}order}}}] attempts a fully automated termination proof by searching for a lexicographic combination of size measures on the arguments of the function. The - method accepts the same arguments as the \mbox{\isa{auto}} method, + method accepts the same arguments as the \hyperlink{method.auto}{\mbox{\isa{auto}}} method, which it uses internally to prove local descents. The same context - modifiers as for \mbox{\isa{auto}} are accepted, see + modifiers as for \hyperlink{method.auto}{\mbox{\isa{auto}}} are accepted, see \secref{sec:clasimp}. In case of failure, extensive information is printed, which can help @@ -564,11 +564,11 @@ \isamarkuptrue% % \begin{isamarkuptext}% -The old TFL commands \mbox{\isa{\isacommand{recdef}}} and \mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}} for defining recursive are mostly obsolete; \mbox{\isa{\isacommand{function}}} or \mbox{\isa{\isacommand{fun}}} should be used instead. +The old TFL commands \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} and \hyperlink{command.HOL.recdef_tc}{\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}} for defining recursive are mostly obsolete; \hyperlink{command.HOL.function}{\mbox{\isa{\isacommand{function}}}} or \hyperlink{command.HOL.fun}{\mbox{\isa{\isacommand{fun}}}} should be used instead. \begin{matharray}{rcl} - \indexdef{HOL}{command}{recdef}\mbox{\isa{\isacommand{recdef}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{recdef\_tc}\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isartrans{theory}{proof(prove)} \\ + \indexdef{HOL}{command}{recdef}\hypertarget{command.HOL.recdef}{\hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{recdef\_tc}\hypertarget{command.HOL.recdef_tc}{\hyperlink{command.HOL.recdef_tc}{\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isartrans{theory}{proof(prove)} \\ \end{matharray} \begin{rail} @@ -586,33 +586,33 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{recdef}}}] defines general well-founded + \item [\hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}}] defines general well-founded recursive functions (using the TFL package), see also \cite{isabelle-HOL}. The ``\isa{{\isachardoublequote}{\isacharparenleft}permissive{\isacharparenright}{\isachardoublequote}}'' option tells TFL to recover from failed proof attempts, returning unfinished results. The \isa{recdef{\isacharunderscore}simp}, \isa{recdef{\isacharunderscore}cong}, and \isa{recdef{\isacharunderscore}wf} hints refer to auxiliary rules to be used in the internal - automated proof process of TFL. Additional \mbox{\isa{clasimpmod}} + automated proof process of TFL. Additional \hyperlink{syntax.clasimpmod}{\mbox{\isa{clasimpmod}}} declarations (cf.\ \secref{sec:clasimp}) may be given to tune the context of the Simplifier (cf.\ \secref{sec:simplifier}) and Classical reasoner (cf.\ \secref{sec:classical}). - \item [\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}~\isa{{\isachardoublequote}c\ {\isacharparenleft}i{\isacharparenright}{\isachardoublequote}}] recommences the + \item [\hyperlink{command.HOL.recdef_tc}{\mbox{\isa{\isacommand{recdef{\isacharunderscore}tc}}}}~\isa{{\isachardoublequote}c\ {\isacharparenleft}i{\isacharparenright}{\isachardoublequote}}] recommences the proof for leftover termination condition number \isa{i} (default - 1) as generated by a \mbox{\isa{\isacommand{recdef}}} definition of + 1) as generated by a \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} definition of constant \isa{c}. - Note that in most cases, \mbox{\isa{\isacommand{recdef}}} is able to finish + Note that in most cases, \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} is able to finish its internal proofs without manual intervention. \end{descr} - \medskip Hints for \mbox{\isa{\isacommand{recdef}}} may be also declared + \medskip Hints for \hyperlink{command.HOL.recdef}{\mbox{\isa{\isacommand{recdef}}}} may be also declared globally, using the following attributes. \begin{matharray}{rcl} - \indexdef{HOL}{attribute}{recdef\_simp}\mbox{\isa{recdef{\isacharunderscore}simp}} & : & \isaratt \\ - \indexdef{HOL}{attribute}{recdef\_cong}\mbox{\isa{recdef{\isacharunderscore}cong}} & : & \isaratt \\ - \indexdef{HOL}{attribute}{recdef\_wf}\mbox{\isa{recdef{\isacharunderscore}wf}} & : & \isaratt \\ + \indexdef{HOL}{attribute}{recdef\_simp}\hypertarget{attribute.HOL.recdef_simp}{\hyperlink{attribute.HOL.recdef_simp}{\mbox{\isa{recdef{\isacharunderscore}simp}}}} & : & \isaratt \\ + \indexdef{HOL}{attribute}{recdef\_cong}\hypertarget{attribute.HOL.recdef_cong}{\hyperlink{attribute.HOL.recdef_cong}{\mbox{\isa{recdef{\isacharunderscore}cong}}}} & : & \isaratt \\ + \indexdef{HOL}{attribute}{recdef\_wf}\hypertarget{attribute.HOL.recdef_wf}{\hyperlink{attribute.HOL.recdef_wf}{\mbox{\isa{recdef{\isacharunderscore}wf}}}} & : & \isaratt \\ \end{matharray} \begin{rail} @@ -628,8 +628,8 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{command}{specification}\mbox{\isa{\isacommand{specification}}} & : & \isartrans{theory}{proof(prove)} \\ - \indexdef{HOL}{command}{ax\_specification}\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}} & : & \isartrans{theory}{proof(prove)} \\ + \indexdef{HOL}{command}{specification}\hypertarget{command.HOL.specification}{\hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}}} & : & \isartrans{theory}{proof(prove)} \\ + \indexdef{HOL}{command}{ax\_specification}\hypertarget{command.HOL.ax_specification}{\hyperlink{command.HOL.ax_specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}}} & : & \isartrans{theory}{proof(prove)} \\ \end{matharray} \begin{rail} @@ -640,14 +640,14 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{specification}}}~\isa{{\isachardoublequote}decls\ {\isasymphi}{\isachardoublequote}}] sets up a + \item [\hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}}~\isa{{\isachardoublequote}decls\ {\isasymphi}{\isachardoublequote}}] sets up a goal stating the existence of terms with the properties specified to hold for the constants given in \isa{decls}. After finishing the proof, the theory will be augmented with definitions for the given constants, as well as with theorems stating the properties for these constants. - \item [\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}~\isa{{\isachardoublequote}decls\ {\isasymphi}{\isachardoublequote}}] sets + \item [\hyperlink{command.HOL.ax_specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}}~\isa{{\isachardoublequote}decls\ {\isasymphi}{\isachardoublequote}}] sets up a goal stating the existence of terms with the properties specified to hold for the constants given in \isa{decls}. After finishing the proof, the theory will be augmented with axioms @@ -660,13 +660,13 @@ \end{descr} - Whether to use \mbox{\isa{\isacommand{specification}}} or \mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}} is to some extent a matter of style. \mbox{\isa{\isacommand{specification}}} introduces no new axioms, and so by - construction cannot introduce inconsistencies, whereas \mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}} does introduce axioms, but only after the + Whether to use \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}} or \hyperlink{command.HOL.ax_specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}} is to some extent a matter of style. \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}} introduces no new axioms, and so by + construction cannot introduce inconsistencies, whereas \hyperlink{command.HOL.ax_specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}} does introduce axioms, but only after the user has explicitly proven it to be safe. A practical issue must be considered, though: After introducing two constants with the same - properties using \mbox{\isa{\isacommand{specification}}}, one can prove + properties using \hyperlink{command.HOL.specification}{\mbox{\isa{\isacommand{specification}}}}, one can prove that the two constants are, in fact, equal. If this might be a - problem, one should use \mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}.% + problem, one should use \hyperlink{command.HOL.ax_specification}{\mbox{\isa{\isacommand{ax{\isacharunderscore}specification}}}}.% \end{isamarkuptext}% \isamarkuptrue% % @@ -698,11 +698,11 @@ to use inference rules for type-checking. \begin{matharray}{rcl} - \indexdef{HOL}{command}{inductive}\mbox{\isa{\isacommand{inductive}}} & : & \isarkeep{local{\dsh}theory} \\ - \indexdef{HOL}{command}{inductive\_set}\mbox{\isa{\isacommand{inductive{\isacharunderscore}set}}} & : & \isarkeep{local{\dsh}theory} \\ - \indexdef{HOL}{command}{coinductive}\mbox{\isa{\isacommand{coinductive}}} & : & \isarkeep{local{\dsh}theory} \\ - \indexdef{HOL}{command}{coinductive\_set}\mbox{\isa{\isacommand{coinductive{\isacharunderscore}set}}} & : & \isarkeep{local{\dsh}theory} \\ - \indexdef{HOL}{attribute}{mono}\mbox{\isa{mono}} & : & \isaratt \\ + \indexdef{HOL}{command}{inductive}\hypertarget{command.HOL.inductive}{\hyperlink{command.HOL.inductive}{\mbox{\isa{\isacommand{inductive}}}}} & : & \isarkeep{local{\dsh}theory} \\ + \indexdef{HOL}{command}{inductive\_set}\hypertarget{command.HOL.inductive_set}{\hyperlink{command.HOL.inductive_set}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}set}}}}} & : & \isarkeep{local{\dsh}theory} \\ + \indexdef{HOL}{command}{coinductive}\hypertarget{command.HOL.coinductive}{\hyperlink{command.HOL.coinductive}{\mbox{\isa{\isacommand{coinductive}}}}} & : & \isarkeep{local{\dsh}theory} \\ + \indexdef{HOL}{command}{coinductive\_set}\hypertarget{command.HOL.coinductive_set}{\hyperlink{command.HOL.coinductive_set}{\mbox{\isa{\isacommand{coinductive{\isacharunderscore}set}}}}} & : & \isarkeep{local{\dsh}theory} \\ + \indexdef{HOL}{attribute}{mono}\hypertarget{attribute.HOL.mono}{\hyperlink{attribute.HOL.mono}{\mbox{\isa{mono}}}} & : & \isaratt \\ \end{matharray} \begin{rail} @@ -717,21 +717,21 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{inductive}}} and \mbox{\isa{\isacommand{coinductive}}}] define (co)inductive predicates from the - introduction rules given in the \mbox{\isa{\isakeyword{where}}} part. The - optional \mbox{\isa{\isakeyword{for}}} part contains a list of parameters of the + \item [\hyperlink{command.HOL.inductive}{\mbox{\isa{\isacommand{inductive}}}} and \hyperlink{command.HOL.coinductive}{\mbox{\isa{\isacommand{coinductive}}}}] define (co)inductive predicates from the + introduction rules given in the \hyperlink{keyword.where}{\mbox{\isa{\isakeyword{where}}}} part. The + optional \hyperlink{keyword.for}{\mbox{\isa{\isakeyword{for}}}} part contains a list of parameters of the (co)inductive predicates that remain fixed throughout the - definition. The optional \mbox{\isa{\isakeyword{monos}}} section contains + definition. The optional \hyperlink{keyword.monos}{\mbox{\isa{\isakeyword{monos}}}} section contains \emph{monotonicity theorems}, which are required for each operator applied to a recursive set in the introduction rules. There \emph{must} be a theorem of the form \isa{{\isachardoublequote}A\ {\isasymle}\ B\ {\isasymLongrightarrow}\ M\ A\ {\isasymle}\ M\ B{\isachardoublequote}}, for each premise \isa{{\isachardoublequote}M\ R\isactrlsub i\ t{\isachardoublequote}} in an introduction rule! - \item [\mbox{\isa{\isacommand{inductive{\isacharunderscore}set}}} and \mbox{\isa{\isacommand{coinductive{\isacharunderscore}set}}}] are wrappers for to the previous commands, + \item [\hyperlink{command.HOL.inductive_set}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}set}}}} and \hyperlink{command.HOL.coinductive_set}{\mbox{\isa{\isacommand{coinductive{\isacharunderscore}set}}}}] are wrappers for to the previous commands, allowing the definition of (co)inductive sets. - \item [\mbox{\isa{mono}}] declares monotonicity rules. These - rule are involved in the automated monotonicity proof of \mbox{\isa{\isacommand{inductive}}}. + \item [\hyperlink{attribute.HOL.mono}{\mbox{\isa{mono}}}] declares monotonicity rules. These + rule are involved in the automated monotonicity proof of \hyperlink{command.HOL.inductive}{\mbox{\isa{\isacommand{inductive}}}}. \end{descr}% \end{isamarkuptext}% @@ -774,7 +774,7 @@ \begin{isamarkuptext}% Each theory contains a default set of theorems that are used in monotonicity proofs. New rules can be added to this set via the - \mbox{\isa{mono}} attribute. The HOL theory \isa{Inductive} + \hyperlink{attribute.HOL.mono}{\mbox{\isa{mono}}} attribute. The HOL theory \isa{Inductive} shows how this is done. In general, the following monotonicity theorems may be added: @@ -817,15 +817,15 @@ % \begin{isamarkuptext}% \begin{matharray}{rcl} - \indexdef{HOL}{method}{arith}\mbox{\isa{arith}} & : & \isarmeth \\ - \indexdef{HOL}{attribute}{arith\_split}\mbox{\isa{arith{\isacharunderscore}split}} & : & \isaratt \\ + \indexdef{HOL}{method}{arith}\hypertarget{method.HOL.arith}{\hyperlink{method.HOL.arith}{\mbox{\isa{arith}}}} & : & \isarmeth \\ + \indexdef{HOL}{attribute}{arith\_split}\hypertarget{attribute.HOL.arith_split}{\hyperlink{attribute.HOL.arith_split}{\mbox{\isa{arith{\isacharunderscore}split}}}} & : & \isaratt \\ \end{matharray} - The \mbox{\isa{arith}} method decides linear arithmetic problems + The \hyperlink{method.HOL.arith}{\mbox{\isa{arith}}} method decides linear arithmetic problems (on types \isa{nat}, \isa{int}, \isa{real}). Any current facts are inserted into the goal before running the procedure. - The \mbox{\isa{arith{\isacharunderscore}split}} attribute declares case split + The \hyperlink{attribute.HOL.arith_split}{\mbox{\isa{arith{\isacharunderscore}split}}} attribute declares case split rules to be expanded before the arithmetic procedure is invoked. Note that a simpler (but faster) version of arithmetic reasoning is @@ -842,10 +842,10 @@ ported to Isar. These should be never used in proper proof texts! \begin{matharray}{rcl} - \indexdef{HOL}{method}{case\_tac}\mbox{\isa{case{\isacharunderscore}tac}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarmeth \\ - \indexdef{HOL}{method}{induct\_tac}\mbox{\isa{induct{\isacharunderscore}tac}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarmeth \\ - \indexdef{HOL}{method}{ind\_cases}\mbox{\isa{ind{\isacharunderscore}cases}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarmeth \\ - \indexdef{HOL}{command}{inductive\_cases}\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{method}{case\_tac}\hypertarget{method.HOL.case_tac}{\hyperlink{method.HOL.case_tac}{\mbox{\isa{case{\isacharunderscore}tac}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarmeth \\ + \indexdef{HOL}{method}{induct\_tac}\hypertarget{method.HOL.induct_tac}{\hyperlink{method.HOL.induct_tac}{\mbox{\isa{induct{\isacharunderscore}tac}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarmeth \\ + \indexdef{HOL}{method}{ind\_cases}\hypertarget{method.HOL.ind_cases}{\hyperlink{method.HOL.ind_cases}{\mbox{\isa{ind{\isacharunderscore}cases}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarmeth \\ + \indexdef{HOL}{command}{inductive\_cases}\hypertarget{command.HOL.inductive_cases}{\hyperlink{command.HOL.inductive_cases}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}}} & : & \isartrans{theory}{theory} \\ \end{matharray} \begin{rail} @@ -864,20 +864,20 @@ \begin{descr} - \item [\mbox{\isa{case{\isacharunderscore}tac}} and \mbox{\isa{induct{\isacharunderscore}tac}}] + \item [\hyperlink{method.HOL.case_tac}{\mbox{\isa{case{\isacharunderscore}tac}}} and \hyperlink{method.HOL.induct_tac}{\mbox{\isa{induct{\isacharunderscore}tac}}}] admit to reason about inductive datatypes only (unless an - alternative rule is given explicitly). Furthermore, \mbox{\isa{case{\isacharunderscore}tac}} does a classical case split on booleans; \mbox{\isa{induct{\isacharunderscore}tac}} allows only variables to be given as instantiation. + alternative rule is given explicitly). Furthermore, \hyperlink{method.HOL.case_tac}{\mbox{\isa{case{\isacharunderscore}tac}}} does a classical case split on booleans; \hyperlink{method.HOL.induct_tac}{\mbox{\isa{induct{\isacharunderscore}tac}}} allows only variables to be given as instantiation. These tactic emulations feature both goal addressing and dynamic instantiation. Note that named rule cases are \emph{not} provided - as would be by the proper \mbox{\isa{induct}} and \mbox{\isa{cases}} proof + as would be by the proper \hyperlink{method.induct}{\mbox{\isa{induct}}} and \hyperlink{method.cases}{\mbox{\isa{cases}}} proof methods (see \secref{sec:cases-induct}). - \item [\mbox{\isa{ind{\isacharunderscore}cases}} and \mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}] provide an interface to the internal \verb|mk_cases| operation. Rules are simplified in an unrestricted + \item [\hyperlink{method.HOL.ind_cases}{\mbox{\isa{ind{\isacharunderscore}cases}}} and \hyperlink{command.HOL.inductive_cases}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}}] provide an interface to the internal \verb|mk_cases| operation. Rules are simplified in an unrestricted forward manner. - While \mbox{\isa{ind{\isacharunderscore}cases}} is a proof method to apply the - result immediately as elimination rules, \mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}} provides case split theorems at the theory level - for later use. The \mbox{\isa{\isakeyword{for}}} argument of the \mbox{\isa{ind{\isacharunderscore}cases}} method allows to specify a list of variables that should + While \hyperlink{method.HOL.ind_cases}{\mbox{\isa{ind{\isacharunderscore}cases}}} is a proof method to apply the + result immediately as elimination rules, \hyperlink{command.HOL.inductive_cases}{\mbox{\isa{\isacommand{inductive{\isacharunderscore}cases}}}} provides case split theorems at the theory level + for later use. The \hyperlink{keyword.for}{\mbox{\isa{\isakeyword{for}}}} argument of the \hyperlink{method.HOL.ind_cases}{\mbox{\isa{ind{\isacharunderscore}cases}}} method allows to specify a list of variables that should be generalized before applying the resulting rule. \end{descr}% @@ -899,12 +899,12 @@ (this actually covers the new-style theory format as well). \begin{matharray}{rcl} - \indexdef{HOL}{command}{value}\mbox{\isa{\isacommand{value}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ - \indexdef{HOL}{command}{code\_module}\mbox{\isa{\isacommand{code{\isacharunderscore}module}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_library}\mbox{\isa{\isacommand{code{\isacharunderscore}library}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{consts\_code}\mbox{\isa{\isacommand{consts{\isacharunderscore}code}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{types\_code}\mbox{\isa{\isacommand{types{\isacharunderscore}code}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{attribute}{code}\mbox{\isa{code}} & : & \isaratt \\ + \indexdef{HOL}{command}{value}\hypertarget{command.HOL.value}{\hyperlink{command.HOL.value}{\mbox{\isa{\isacommand{value}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ + \indexdef{HOL}{command}{code\_module}\hypertarget{command.HOL.code_module}{\hyperlink{command.HOL.code_module}{\mbox{\isa{\isacommand{code{\isacharunderscore}module}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_library}\hypertarget{command.HOL.code_library}{\hyperlink{command.HOL.code_library}{\mbox{\isa{\isacommand{code{\isacharunderscore}library}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{consts\_code}\hypertarget{command.HOL.consts_code}{\hyperlink{command.HOL.consts_code}{\mbox{\isa{\isacommand{consts{\isacharunderscore}code}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{types\_code}\hypertarget{command.HOL.types_code}{\hyperlink{command.HOL.types_code}{\mbox{\isa{\isacommand{types{\isacharunderscore}code}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{attribute}{code}\hypertarget{attribute.HOL.code}{\hyperlink{attribute.HOL.code}{\mbox{\isa{code}}}} & : & \isaratt \\ \end{matharray} \begin{rail} @@ -946,7 +946,7 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{value}}}~\isa{t}] evaluates and prints a + \item [\hyperlink{command.HOL.value}{\mbox{\isa{\isacommand{value}}}}~\isa{t}] evaluates and prints a term using the code generator. \end{descr} @@ -961,21 +961,21 @@ introduction on how to use it. \begin{matharray}{rcl} - \indexdef{HOL}{command}{export\_code}\mbox{\isa{\isacommand{export{\isacharunderscore}code}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ - \indexdef{HOL}{command}{code\_thms}\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ - \indexdef{HOL}{command}{code\_deps}\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ - \indexdef{HOL}{command}{code\_datatype}\mbox{\isa{\isacommand{code{\isacharunderscore}datatype}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_const}\mbox{\isa{\isacommand{code{\isacharunderscore}const}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_type}\mbox{\isa{\isacommand{code{\isacharunderscore}type}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_class}\mbox{\isa{\isacommand{code{\isacharunderscore}class}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_instance}\mbox{\isa{\isacommand{code{\isacharunderscore}instance}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_monad}\mbox{\isa{\isacommand{code{\isacharunderscore}monad}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_reserved}\mbox{\isa{\isacommand{code{\isacharunderscore}reserved}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_include}\mbox{\isa{\isacommand{code{\isacharunderscore}include}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_modulename}\mbox{\isa{\isacommand{code{\isacharunderscore}modulename}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{code\_exception}\mbox{\isa{\isacommand{code{\isacharunderscore}exception}}} & : & \isartrans{theory}{theory} \\ - \indexdef{HOL}{command}{print\_codesetup}\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ - \indexdef{HOL}{attribute}{code}\mbox{\isa{code}} & : & \isaratt \\ + \indexdef{HOL}{command}{export\_code}\hypertarget{command.HOL.export_code}{\hyperlink{command.HOL.export_code}{\mbox{\isa{\isacommand{export{\isacharunderscore}code}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ + \indexdef{HOL}{command}{code\_thms}\hypertarget{command.HOL.code_thms}{\hyperlink{command.HOL.code_thms}{\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ + \indexdef{HOL}{command}{code\_deps}\hypertarget{command.HOL.code_deps}{\hyperlink{command.HOL.code_deps}{\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ + \indexdef{HOL}{command}{code\_datatype}\hypertarget{command.HOL.code_datatype}{\hyperlink{command.HOL.code_datatype}{\mbox{\isa{\isacommand{code{\isacharunderscore}datatype}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_const}\hypertarget{command.HOL.code_const}{\hyperlink{command.HOL.code_const}{\mbox{\isa{\isacommand{code{\isacharunderscore}const}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_type}\hypertarget{command.HOL.code_type}{\hyperlink{command.HOL.code_type}{\mbox{\isa{\isacommand{code{\isacharunderscore}type}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_class}\hypertarget{command.HOL.code_class}{\hyperlink{command.HOL.code_class}{\mbox{\isa{\isacommand{code{\isacharunderscore}class}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_instance}\hypertarget{command.HOL.code_instance}{\hyperlink{command.HOL.code_instance}{\mbox{\isa{\isacommand{code{\isacharunderscore}instance}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_monad}\hypertarget{command.HOL.code_monad}{\hyperlink{command.HOL.code_monad}{\mbox{\isa{\isacommand{code{\isacharunderscore}monad}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_reserved}\hypertarget{command.HOL.code_reserved}{\hyperlink{command.HOL.code_reserved}{\mbox{\isa{\isacommand{code{\isacharunderscore}reserved}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_include}\hypertarget{command.HOL.code_include}{\hyperlink{command.HOL.code_include}{\mbox{\isa{\isacommand{code{\isacharunderscore}include}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_modulename}\hypertarget{command.HOL.code_modulename}{\hyperlink{command.HOL.code_modulename}{\mbox{\isa{\isacommand{code{\isacharunderscore}modulename}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{code\_exception}\hypertarget{command.HOL.code_exception}{\hyperlink{command.HOL.code_exception}{\mbox{\isa{\isacommand{code{\isacharunderscore}exception}}}}} & : & \isartrans{theory}{theory} \\ + \indexdef{HOL}{command}{print\_codesetup}\hypertarget{command.HOL.print_codesetup}{\hyperlink{command.HOL.print_codesetup}{\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}}}\isa{{\isachardoublequote}\isactrlsup {\isacharasterisk}{\isachardoublequote}} & : & \isarkeep{theory~|~proof} \\ + \indexdef{HOL}{attribute}{code}\hypertarget{attribute.HOL.code}{\hyperlink{attribute.HOL.code}{\mbox{\isa{code}}}} & : & \isaratt \\ \end{matharray} \begin{rail} @@ -1050,7 +1050,7 @@ \begin{descr} - \item [\mbox{\isa{\isacommand{export{\isacharunderscore}code}}}] is the canonical interface + \item [\hyperlink{command.HOL.export_code}{\mbox{\isa{\isacommand{export{\isacharunderscore}code}}}}] is the canonical interface for generating and serializing code: for a given list of constants, code is generated for the specified target languages. Abstract code is cached incrementally. If no constant is given, the currently @@ -1063,7 +1063,7 @@ By default, for each involved theory one corresponding name space module is generated. Alternativly, a module name may be specified - after the \mbox{\isa{\isakeyword{module{\isacharunderscore}name}}} keyword; then \emph{all} code is + after the \hyperlink{keyword.module_name}{\mbox{\isa{\isakeyword{module{\isacharunderscore}name}}}} keyword; then \emph{all} code is placed in this module. For \emph{SML} and \emph{OCaml}, the file specification refers to a @@ -1077,68 +1077,68 @@ \emph{Haskell} a module name prefix may be given using the ``\isa{{\isachardoublequote}root{\isacharcolon}{\isachardoublequote}}'' argument; ``\isa{string{\isacharunderscore}classes}'' adds a ``\verb|deriving (Read, Show)|'' clause to each appropriate datatype declaration. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}] prints a list of theorems + \item [\hyperlink{command.HOL.code_thms}{\mbox{\isa{\isacommand{code{\isacharunderscore}thms}}}}] prints a list of theorems representing the corresponding program containing all given constants; if no constants are given, the currently cached code theorems are printed. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}] visualizes dependencies of + \item [\hyperlink{command.HOL.code_deps}{\mbox{\isa{\isacommand{code{\isacharunderscore}deps}}}}] visualizes dependencies of theorems representing the corresponding program containing all given constants; if no constants are given, the currently cached code theorems are visualized. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}datatype}}}] specifies a constructor set + \item [\hyperlink{command.HOL.code_datatype}{\mbox{\isa{\isacommand{code{\isacharunderscore}datatype}}}}] specifies a constructor set for a logical type. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}const}}}] associates a list of constants + \item [\hyperlink{command.HOL.code_const}{\mbox{\isa{\isacommand{code{\isacharunderscore}const}}}}] associates a list of constants with target-specific serializations; omitting a serialization deletes an existing serialization. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}type}}}] associates a list of type + \item [\hyperlink{command.HOL.code_type}{\mbox{\isa{\isacommand{code{\isacharunderscore}type}}}}] associates a list of type constructors with target-specific serializations; omitting a serialization deletes an existing serialization. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}class}}}] associates a list of classes + \item [\hyperlink{command.HOL.code_class}{\mbox{\isa{\isacommand{code{\isacharunderscore}class}}}}] associates a list of classes with target-specific class names; in addition, constants associated with this class may be given target-specific names used for instance declarations; omitting a serialization deletes an existing serialization. This applies only to \emph{Haskell}. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}instance}}}] declares a list of type + \item [\hyperlink{command.HOL.code_instance}{\mbox{\isa{\isacommand{code{\isacharunderscore}instance}}}}] declares a list of type constructor / class instance relations as ``already present'' for a given target. Omitting a ``\isa{{\isachardoublequote}{\isacharminus}{\isachardoublequote}}'' deletes an existing ``already present'' declaration. This applies only to \emph{Haskell}. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}monad}}}] provides an auxiliary + \item [\hyperlink{command.HOL.code_monad}{\mbox{\isa{\isacommand{code{\isacharunderscore}monad}}}}] provides an auxiliary mechanism to generate monadic code. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}reserved}}}] declares a list of names as + \item [\hyperlink{command.HOL.code_reserved}{\mbox{\isa{\isacommand{code{\isacharunderscore}reserved}}}}] declares a list of names as reserved for a given target, preventing it to be shadowed by any generated code. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}include}}}] adds arbitrary named content + \item [\hyperlink{command.HOL.code_include}{\mbox{\isa{\isacommand{code{\isacharunderscore}include}}}}] adds arbitrary named content (``include'') to generated code. A as last argument ``\isa{{\isachardoublequote}{\isacharminus}{\isachardoublequote}}'' will remove an already added ``include''. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}modulename}}}] declares aliasings from + \item [\hyperlink{command.HOL.code_modulename}{\mbox{\isa{\isacommand{code{\isacharunderscore}modulename}}}}] declares aliasings from one module name onto another. - \item [\mbox{\isa{\isacommand{code{\isacharunderscore}exception}}}] declares constants which + \item [\hyperlink{command.HOL.code_exception}{\mbox{\isa{\isacommand{code{\isacharunderscore}exception}}}}] declares constants which are not required to have a definition by a defining equations; these are mapped on exceptions instead. - \item [\mbox{\isa{code}}~\isa{func}] explicitly selects (or + \item [\hyperlink{attribute.HOL.code}{\mbox{\isa{code}}}~\isa{func}] explicitly selects (or with option ``\isa{{\isachardoublequote}del{\isacharcolon}{\isachardoublequote}}'' deselects) a defining equation for code generation. Usually packages introducing defining equations provide a resonable default setup for selection. - \item [\mbox{\isa{code}}\isa{inline}] declares (or with + \item [\hyperlink{attribute.HOL.code}{\mbox{\isa{code}}}\isa{inline}] declares (or with option ``\isa{{\isachardoublequote}del{\isacharcolon}{\isachardoublequote}}'' removes) inlining theorems which are applied as rewrite rules to any defining equation during preprocessing. - \item [\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}] gives an overview on + \item [\hyperlink{command.HOL.print_codesetup}{\mbox{\isa{\isacommand{print{\isacharunderscore}codesetup}}}}] gives an overview on selected defining equations, code generator datatypes and preprocessor setup.