diff -r 3d491d1eeff7 -r 8dbb0b2f6576 src/Doc/Demo_LLNCS/Document.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/Doc/Demo_LLNCS/Document.thy Fri Nov 04 20:15:54 2022 +0100 @@ -0,0 +1,64 @@ +theory Document + imports Main +begin + +section \Some section\ + +subsection \Some subsection\ + +subsection \Some subsubsection\ + +subsubsection \Some subsubsubsection\ + +paragraph \A paragraph.\ + +text \Informal bla bla.\ + +definition "foo = True" \ \side remark on \<^const>\foo\\ + +definition "bar = False" \ \side remark on \<^const>\bar\\ + +lemma foo unfolding foo_def .. + + +paragraph \Another paragraph.\ + +text \See also @{cite \\S3\ "isabelle-system"}.\ + + +section \Formal proof of Cantor's theorem\ + +text_raw \\isakeeptag{proof}\ +text \ + Cantor's Theorem states that there is no surjection from + a set to its powerset. The proof works by diagonalization. E.g.\ see + \<^item> \<^url>\http://mathworld.wolfram.com/CantorDiagonalMethod.html\ + \<^item> \<^url>\https://en.wikipedia.org/wiki/Cantor%27s%5fdiagonal%5fargument\ +\ + +theorem Cantor: "\f :: 'a \ 'a set. \A. \x. A = f x" +proof + assume "\f :: 'a \ 'a set. \A. \x. A = f x" + then obtain f :: "'a \ 'a set" where *: "\A. \x. A = f x" .. + let ?D = "{x. x \ f x}" + from * obtain a where "?D = f a" by blast + moreover have "a \ ?D \ a \ f a" by blast + ultimately show False by blast +qed + + +subsection \Lorem ipsum dolor\ + +text \ + Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec id ipsum + sapien. Vivamus malesuada enim nibh, a tristique nisi sodales ac. Praesent + ut sem consectetur, interdum tellus ac, sodales nulla. Quisque vel diam at + risus tempus tempor eget a tortor. Suspendisse potenti. Nulla erat lacus, + dignissim sed volutpat nec, feugiat non leo. Nunc blandit et justo sed + venenatis. Donec scelerisque placerat magna, et congue nulla convallis vel. + Cras tristique dolor consequat dolor tristique rutrum. Suspendisse ultrices + sem nibh, et suscipit felis ultricies at. Aliquam venenatis est vel nulla + efficitur ornare. Lorem ipsum dolor sit amet, consectetur adipiscing elit. +\ + +end