diff -r 56f1c0af602c -r 8e72f55295fd src/HOL/Relation.thy --- a/src/HOL/Relation.thy Mon Sep 23 15:01:10 2024 +0200 +++ b/src/HOL/Relation.thy Mon Sep 23 21:09:23 2024 +0200 @@ -1074,15 +1074,15 @@ subsubsection \Converse\ -inductive_set converse :: "('a \ 'b) set \ ('b \ 'a) set" (\(_\)\ [1000] 999) +inductive_set converse :: "('a \ 'b) set \ ('b \ 'a) set" (\(\notation=\postfix -1\\_\)\ [1000] 999) for r :: "('a \ 'b) set" where "(a, b) \ r \ (b, a) \ r\" -notation conversep (\(_\\)\ [1000] 1000) +notation conversep (\(\notation=\postfix -1-1\\_\\)\ [1000] 1000) notation (ASCII) - converse (\(_^-1)\ [1000] 999) and - conversep (\(_^--1)\ [1000] 1000) + converse (\(\notation=\postfix -1\\_^-1)\ [1000] 999) and + conversep (\(\notation=\postfix -1-1\\_^--1)\ [1000] 1000) lemma converseI [sym]: "(a, b) \ r \ (b, a) \ r\" by (fact converse.intros)