diff -r 4c69318e6a6d -r 8ee919e42174 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Fri Oct 08 15:08:47 1999 +0200 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Fri Oct 08 15:09:14 1999 +0200 @@ -23,13 +23,15 @@ inductive "tiling A" intrs empty: "{} : tiling A" - Un: "[| a : A; t : tiling A; a <= - t |] ==> a Un t : tiling A"; + Un: "[| a : A; t : tiling A; a <= - t |] + ==> a Un t : tiling A"; -text "The union of two disjoint tilings is a tiling"; +text "The union of two disjoint tilings is a tiling."; lemma tiling_Un: - "t : tiling A --> u : tiling A --> t Int u = {} --> t Un u : tiling A"; + "t : tiling A --> u : tiling A --> t Int u = {} + --> t Un u : tiling A"; proof; assume "t : tiling A" (is "_ : ?T"); thus "u : ?T --> t Int u = {} --> t Un u : ?T" (is "?P t"); @@ -119,7 +121,8 @@ horiz: "{(i, j), (i, j + 1)} : domino" vertl: "{(i, j), (i + 1, j)} : domino"; -lemma dominoes_tile_row: "{i} Times below (2 * n) : tiling domino" +lemma dominoes_tile_row: + "{i} Times below (2 * n) : tiling domino" (is "?P n" is "?B n : ?T"); proof (induct n); show "?P 0"; by (simp add: below_0 tiling.empty); @@ -268,9 +271,11 @@ note [simp] = evnodd_iff evnodd_empty evnodd_insert evnodd_Diff; have "card (?e ?t'' 0) < card (?e ?t' 0)"; proof -; - have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)}) < card (?e ?t' 0)"; + have "card (?e ?t' 0 - {(2 * m + 1, 2 * n + 1)}) + < card (?e ?t' 0)"; proof (rule card_Diff1_less); - show "finite (?e ?t' 0)"; by (rule finite_subset, rule fin) force; + show "finite (?e ?t' 0)"; + by (rule finite_subset, rule fin) force; show "(2 * m + 1, 2 * n + 1) : ?e ?t' 0"; by simp; qed; thus ?thesis; by simp; @@ -282,7 +287,8 @@ by (rule card_Diff1_less); thus ?thesis; by simp; qed; - also; from t; have "... = card (?e ?t 1)"; by (rule tiling_domino_01); + also; from t; have "... = card (?e ?t 1)"; + by (rule tiling_domino_01); also; have "?e ?t 1 = ?e ?t'' 1"; by simp; also; from t''; have "card ... = card (?e ?t'' 0)"; by (rule tiling_domino_01 [RS sym]);