diff -r 55e8b2a60dfa -r 8f3d03433917 src/HOL/Relation.thy --- a/src/HOL/Relation.thy Mon Mar 24 09:56:20 2025 +0100 +++ b/src/HOL/Relation.thy Mon Mar 24 13:59:08 2025 +0100 @@ -257,12 +257,12 @@ lemma reflp_on_equality [simp]: "reflp_on A (=)" by (simp add: reflp_on_def) -lemma reflp_on_mono: - "reflp_on A R \ (\x y. x \ A \ y \ A \ R x y \ Q x y) \ reflp_on A Q" - by (auto intro: reflp_onI dest: reflp_onD) +lemma reflp_on_mono_strong: + "reflp_on B R \ A \ B \ (\x y. x \ A \ y \ A \ R x y \ Q x y) \ reflp_on A Q" + by (rule reflp_onI) (auto dest: reflp_onD) lemma reflp_mono: "reflp R \ (\x y. R x y \ Q x y) \ reflp Q" - by (rule reflp_on_mono[of UNIV R Q]) simp_all + using reflp_on_mono_strong[OF _ subset_UNIV] . lemma (in preorder) reflp_on_le[simp]: "reflp_on A (\)" by (simp add: reflp_onI)