diff -r fae6233c5f37 -r 8ffc4d0e652d src/HOL/HOLCF/LowerPD.thy --- a/src/HOL/HOLCF/LowerPD.thy Wed Jan 13 23:02:28 2016 +0100 +++ b/src/HOL/HOLCF/LowerPD.thy Wed Jan 13 23:07:06 2016 +0100 @@ -2,13 +2,13 @@ Author: Brian Huffman *) -section {* Lower powerdomain *} +section \Lower powerdomain\ theory LowerPD imports Compact_Basis begin -subsection {* Basis preorder *} +subsection \Basis preorder\ definition lower_le :: "'a pd_basis \ 'a pd_basis \ bool" (infix "\\" 50) where @@ -72,7 +72,7 @@ done -subsection {* Type definition *} +subsection \Type definition\ typedef 'a lower_pd ("('(_')\)") = "{S::'a pd_basis set. lower_le.ideal S}" @@ -105,7 +105,7 @@ using lower_principal_def pd_basis_countable by (rule lower_le.typedef_ideal_completion) -text {* Lower powerdomain is pointed *} +text \Lower powerdomain is pointed\ lemma lower_pd_minimal: "lower_principal (PDUnit compact_bot) \ ys" by (induct ys rule: lower_pd.principal_induct, simp, simp) @@ -117,7 +117,7 @@ by (rule lower_pd_minimal [THEN bottomI, symmetric]) -subsection {* Monadic unit and plus *} +subsection \Monadic unit and plus\ definition lower_unit :: "'a \ 'a lower_pd" where @@ -176,11 +176,11 @@ lemmas lower_plus_left_commute = lower_add.left_commute lemmas lower_plus_left_absorb = lower_add.left_idem -text {* Useful for @{text "simp add: lower_plus_ac"} *} +text \Useful for \simp add: lower_plus_ac\\ lemmas lower_plus_ac = lower_plus_assoc lower_plus_commute lower_plus_left_commute -text {* Useful for @{text "simp only: lower_plus_aci"} *} +text \Useful for \simp only: lower_plus_aci\\ lemmas lower_plus_aci = lower_plus_ac lower_plus_absorb lower_plus_left_absorb @@ -267,7 +267,7 @@ by (auto dest!: lower_pd.compact_imp_principal) -subsection {* Induction rules *} +subsection \Induction rules\ lemma lower_pd_induct1: assumes P: "adm P" @@ -297,7 +297,7 @@ done -subsection {* Monadic bind *} +subsection \Monadic bind\ definition lower_bind_basis :: @@ -369,7 +369,7 @@ by (induct xs, simp_all) -subsection {* Map *} +subsection \Map\ definition lower_map :: "('a \ 'b) \ 'a lower_pd \ 'b lower_pd" where @@ -460,7 +460,7 @@ by (rule finite_range_imp_finite_fixes) qed -subsection {* Lower powerdomain is bifinite *} +subsection \Lower powerdomain is bifinite\ lemma approx_chain_lower_map: assumes "approx_chain a" @@ -475,7 +475,7 @@ by (fast intro!: approx_chain_lower_map) qed -subsection {* Join *} +subsection \Join\ definition lower_join :: "'a lower_pd lower_pd \ 'a lower_pd" where