diff -r 54a3db2ed201 -r 903bb1495239 src/HOL/Library/Indicator_Function.thy --- a/src/HOL/Library/Indicator_Function.thy Wed Jun 17 10:57:11 2015 +0200 +++ b/src/HOL/Library/Indicator_Function.thy Wed Jun 17 11:03:05 2015 +0200 @@ -2,7 +2,7 @@ Author: Johannes Hoelzl (TU Muenchen) *) -section {* Indicator Function *} +section \Indicator Function\ theory Indicator_Function imports Complex_Main @@ -88,7 +88,7 @@ then have "\n. (indicator (A (n + i)) x :: 'a) = 1" "(indicator (\ i. A i) x :: 'a) = 1" - using incseqD[OF `incseq A`, of i "n + i" for n] `x \ A i` by (auto simp: indicator_def) + using incseqD[OF \incseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) then show ?thesis by (rule_tac LIMSEQ_offset[of _ i]) simp qed (auto simp: indicator_def) @@ -113,7 +113,7 @@ then have "\n. (indicator (A (n + i)) x :: 'a) = 0" "(indicator (\i. A i) x :: 'a) = 0" - using decseqD[OF `decseq A`, of i "n + i" for n] `x \ A i` by (auto simp: indicator_def) + using decseqD[OF \decseq A\, of i "n + i" for n] \x \ A i\ by (auto simp: indicator_def) then show ?thesis by (rule_tac LIMSEQ_offset[of _ i]) simp qed (auto simp: indicator_def)