diff -r dd1a2905ea73 -r 90c88e7ef62d src/HOL/Matrix/MatrixGeneral.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Matrix/MatrixGeneral.thy Fri Apr 16 18:30:51 2004 +0200 @@ -0,0 +1,1292 @@ +(* Title: HOL/Matrix/MatrixGeneral.thy + ID: $Id$ + Author: Steven Obua + License: 2004 Technische Universität München +*) + +theory MatrixGeneral = Main: + +types 'a infmatrix = "[nat, nat] \ 'a" + +constdefs + nonzero_positions :: "('a::zero) infmatrix \ (nat*nat) set" + "nonzero_positions A == {pos. A (fst pos) (snd pos) ~= 0}" + +typedef 'a matrix = "{(f::(('a::zero) infmatrix)). finite (nonzero_positions f)}" +apply (rule_tac x="(% j i. 0)" in exI) +by (simp add: nonzero_positions_def) + +declare Rep_matrix_inverse[simp] + +lemma finite_nonzero_positions : "finite (nonzero_positions (Rep_matrix A))" +apply (rule Abs_matrix_induct) +by (simp add: Abs_matrix_inverse matrix_def) + +constdefs + nrows :: "('a::zero) matrix \ nat" + "nrows A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image fst) (nonzero_positions (Rep_matrix A))))" + ncols :: "('a::zero) matrix \ nat" + "ncols A == if nonzero_positions(Rep_matrix A) = {} then 0 else Suc(Max ((image snd) (nonzero_positions (Rep_matrix A))))" + +lemma nrows: + assumes hyp: "nrows A \ m" + shows "(Rep_matrix A m n) = 0" (is ?concl) +proof cases + assume "nonzero_positions(Rep_matrix A) = {}" + then show "(Rep_matrix A m n) = 0" by (simp add: nonzero_positions_def) +next + assume a: "nonzero_positions(Rep_matrix A) \ {}" + let ?S = "fst`(nonzero_positions(Rep_matrix A))" + from a have b: "?S \ {}" by (simp) + have c: "finite (?S)" by (simp add: finite_nonzero_positions) + from hyp have d: "Max (?S) < m" by (simp add: a nrows_def) + have "m \ ?S" + proof - + have "m \ ?S \ m <= Max(?S)" by (simp add: Max[OF c b]) + moreover from d have "~(m <= Max ?S)" by (simp) + ultimately show "m \ ?S" by (auto) + qed + thus "Rep_matrix A m n = 0" by (simp add: nonzero_positions_def image_Collect) +qed +text {* \matrix cool *} +constdefs + transpose_infmatrix :: "'a infmatrix \ 'a infmatrix" + "transpose_infmatrix A j i == A i j" + transpose_matrix :: "('a::zero) matrix \ 'a matrix" + "transpose_matrix == Abs_matrix o transpose_infmatrix o Rep_matrix" + +declare transpose_infmatrix_def[simp] + +lemma transpose_infmatrix_twice[simp]: "transpose_infmatrix (transpose_infmatrix A) = A" +by ((rule ext)+, simp) + +lemma transpose_infmatrix: "transpose_infmatrix (% j i. P j i) = (% j i. P i j)" + apply (rule ext)+ + by (simp add: transpose_infmatrix_def) + +lemma transpose_infmatrix_closed[simp]: "Rep_matrix (Abs_matrix (transpose_infmatrix (Rep_matrix x))) = transpose_infmatrix (Rep_matrix x)" +apply (rule Abs_matrix_inverse) +apply (simp add: matrix_def nonzero_positions_def image_def) +proof - + let ?A = "{pos. Rep_matrix x (snd pos) (fst pos) \ 0}" + let ?swap = "% pos. (snd pos, fst pos)" + let ?B = "{pos. Rep_matrix x (fst pos) (snd pos) \ 0}" + have swap_image: "?swap`?A = ?B" + apply (simp add: image_def) + apply (rule set_ext) + apply (simp) + proof + fix y + assume hyp: "\a b. Rep_matrix x b a \ 0 \ y = (b, a)" + thus "Rep_matrix x (fst y) (snd y) \ 0" + proof - + from hyp obtain a b where "(Rep_matrix x b a \ 0 & y = (b,a))" by blast + then show "Rep_matrix x (fst y) (snd y) \ 0" by (simp) + qed + next + fix y + assume hyp: "Rep_matrix x (fst y) (snd y) \ 0" + show "\ a b. (Rep_matrix x b a \ 0 & y = (b,a))" by (rule exI[of _ "snd y"], rule exI[of _ "fst y"], simp) + qed + then have "finite (?swap`?A)" + proof - + have "finite (nonzero_positions (Rep_matrix x))" by (simp add: finite_nonzero_positions) + then have "finite ?B" by (simp add: nonzero_positions_def) + with swap_image show "finite (?swap`?A)" by (simp) + qed + moreover + have "inj_on ?swap ?A" by (simp add: inj_on_def) + ultimately show "finite ?A"by (rule finite_imageD[of ?swap ?A]) +qed + +lemma transpose_matrix[simp]: "Rep_matrix(transpose_matrix A) j i = Rep_matrix A i j" +by (simp add: transpose_matrix_def) + +lemma transpose_transpose_id[simp]: "transpose_matrix (transpose_matrix A) = A" +by (simp add: transpose_matrix_def) + +lemma nrows_transpose[simp]: "nrows (transpose_matrix A) = ncols A" +by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def) + +lemma ncols_transpose[simp]: "ncols (transpose_matrix A) = nrows A" +by (simp add: nrows_def ncols_def nonzero_positions_def transpose_matrix_def image_def) + +lemma ncols: "ncols A <= n \ Rep_matrix A m n = 0" +proof - + assume "ncols A <= n" + then have "nrows (transpose_matrix A) <= n" by (simp) + then have "Rep_matrix (transpose_matrix A) n m = 0" by (rule nrows) + thus "Rep_matrix A m n = 0" by (simp add: transpose_matrix_def) +qed + +lemma ncols_le: "(ncols A <= n) = (! j i. n <= i \ (Rep_matrix A j i) = 0)" (is "_ = ?st") +apply (auto) +apply (simp add: ncols) +proof (simp add: ncols_def, auto) + let ?P = "nonzero_positions (Rep_matrix A)" + let ?p = "snd`?P" + have a:"finite ?p" by (simp add: finite_nonzero_positions) + let ?m = "Max ?p" + assume "~(Suc (?m) <= n)" + then have b:"n <= ?m" by (simp) + fix a b + assume "(a,b) \ ?P" + then have "?p \ {}" by (auto) + with a have "?m \ ?p" by (simp) + moreover have "!x. (x \ ?p \ (? y. (Rep_matrix A y x) \ 0))" by (simp add: nonzero_positions_def image_def) + ultimately have "? y. (Rep_matrix A y ?m) \ 0" by (simp) + moreover assume ?st + ultimately show "False" using b by (simp) +qed + +lemma less_ncols: "(n < ncols A) = (? j i. n <= i & (Rep_matrix A j i) \ 0)" (is ?concl) +proof - + have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith + show ?concl by (simp add: a ncols_le) +qed + +lemma le_ncols: "(n <= ncols A) = (\ m. (\ j i. m <= i \ (Rep_matrix A j i) = 0) \ n <= m)" (is ?concl) +apply (auto) +apply (subgoal_tac "ncols A <= m") +apply (simp) +apply (simp add: ncols_le) +apply (drule_tac x="ncols A" in spec) +by (simp add: ncols) + +lemma nrows_le: "(nrows A <= n) = (! j i. n <= j \ (Rep_matrix A j i) = 0)" (is ?s) +proof - + have "(nrows A <= n) = (ncols (transpose_matrix A) <= n)" by (simp) + also have "\ = (! j i. n <= i \ (Rep_matrix (transpose_matrix A) j i = 0))" by (rule ncols_le) + also have "\ = (! j i. n <= i \ (Rep_matrix A i j) = 0)" by (simp) + finally show "(nrows A <= n) = (! j i. n <= j \ (Rep_matrix A j i) = 0)" by (auto) +qed + +lemma less_nrows: "(m < nrows A) = (? j i. m <= j & (Rep_matrix A j i) \ 0)" (is ?concl) +proof - + have a: "!! (a::nat) b. (a < b) = (~(b <= a))" by arith + show ?concl by (simp add: a nrows_le) +qed + +lemma le_nrows: "(n <= nrows A) = (\ m. (\ j i. m <= j \ (Rep_matrix A j i) = 0) \ n <= m)" (is ?concl) +apply (auto) +apply (subgoal_tac "nrows A <= m") +apply (simp) +apply (simp add: nrows_le) +apply (drule_tac x="nrows A" in spec) +by (simp add: nrows) + +lemma finite_natarray1: "finite {x. x < (n::nat)}" +apply (induct n) +apply (simp) +proof - + fix n + have "{x. x < Suc n} = insert n {x. x < n}" by (rule set_ext, simp, arith) + moreover assume "finite {x. x < n}" + ultimately show "finite {x. x < Suc n}" by (simp) +qed + +lemma finite_natarray2: "finite {pos. (fst pos) < (m::nat) & (snd pos) < (n::nat)}" + apply (induct m) + apply (simp+) + proof - + fix m::nat + let ?s0 = "{pos. fst pos < m & snd pos < n}" + let ?s1 = "{pos. fst pos < (Suc m) & snd pos < n}" + let ?sd = "{pos. fst pos = m & snd pos < n}" + assume f0: "finite ?s0" + have f1: "finite ?sd" + proof - + let ?f = "% x. (m, x)" + have "{pos. fst pos = m & snd pos < n} = ?f ` {x. x < n}" by (rule set_ext, simp add: image_def, auto) + moreover have "finite {x. x < n}" by (simp add: finite_natarray1) + ultimately show "finite {pos. fst pos = m & snd pos < n}" by (simp) + qed + have su: "?s0 \ ?sd = ?s1" by (rule set_ext, simp, arith) + from f0 f1 have "finite (?s0 \ ?sd)" by (rule finite_UnI) + with su show "finite ?s1" by (simp) +qed + +lemma RepAbs_matrix: + assumes aem: "? m. ! j i. m <= j \ x j i = 0" (is ?em) and aen:"? n. ! j i. (n <= i \ x j i = 0)" (is ?en) + shows "(Rep_matrix (Abs_matrix x)) = x" +apply (rule Abs_matrix_inverse) +apply (simp add: matrix_def nonzero_positions_def) +proof - + from aem obtain m where a: "! j i. m <= j \ x j i = 0" by (blast) + from aen obtain n where b: "! j i. n <= i \ x j i = 0" by (blast) + let ?u = "{pos. x (fst pos) (snd pos) \ 0}" + let ?v = "{pos. fst pos < m & snd pos < n}" + have c: "!! (m::nat) a. ~(m <= a) \ a < m" by (arith) + from a b have "(?u \ (-?v)) = {}" + apply (simp) + apply (rule set_ext) + apply (simp) + apply auto + by (rule c, auto)+ + then have d: "?u \ ?v" by blast + moreover have "finite ?v" by (simp add: finite_natarray2) + ultimately show "finite ?u" by (rule finite_subset) +qed + +constdefs + apply_infmatrix :: "('a \ 'b) \ 'a infmatrix \ 'b infmatrix" + "apply_infmatrix f == % A. (% j i. f (A j i))" + apply_matrix :: "('a \ 'b) \ ('a::zero) matrix \ ('b::zero) matrix" + "apply_matrix f == % A. Abs_matrix (apply_infmatrix f (Rep_matrix A))" + combine_infmatrix :: "('a \ 'b \ 'c) \ 'a infmatrix \ 'b infmatrix \ 'c infmatrix" + "combine_infmatrix f == % A B. (% j i. f (A j i) (B j i))" + combine_matrix :: "('a \ 'b \ 'c) \ ('a::zero) matrix \ ('b::zero) matrix \ ('c::zero) matrix" + "combine_matrix f == % A B. Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))" + +lemma expand_apply_infmatrix[simp]: "apply_infmatrix f A j i = f (A j i)" +by (simp add: apply_infmatrix_def) + +lemma expand_combine_infmatrix[simp]: "combine_infmatrix f A B j i = f (A j i) (B j i)" +by (simp add: combine_infmatrix_def) + +constdefs +commutative :: "('a \ 'a \ 'b) \ bool" +"commutative f == ! x y. f x y = f y x" +associative :: "('a \ 'a \ 'a) \ bool" +"associative f == ! x y z. f (f x y) z = f x (f y z)" + +text{* +To reason about associativity and commutativity of operations on matrices, +let's take a step back and look at the general situtation: Assume that we have +sets $A$ and $B$ with $B \subset A$ and an abstraction $u: A \rightarrow B$. This abstraction has to fulfill $u(b) = b$ for all $b \in B$, but is arbitrary otherwise. +Each function $f: A \times A \rightarrow A$ now induces a function $f': B \times B \rightarrow B$ by $f' = u \circ f$. +It is obvious that commutativity of $f$ implies commutativity of $f'$: $f' x y = u (f x y) = u (f y x) = f' y x.$ +*} + +lemma combine_infmatrix_commute: + "commutative f \ commutative (combine_infmatrix f)" +by (simp add: commutative_def combine_infmatrix_def) + +lemma combine_matrix_commute: +"commutative f \ commutative (combine_matrix f)" +by (simp add: combine_matrix_def commutative_def combine_infmatrix_def) + +text{* +On the contrary, given an associative function $f$ we cannot expect $f'$ to be associative. A counterexample is given by $A=\ganz$, $B=\{-1, 0, 1\}$, +as $f$ we take addition on $\ganz$, which is clearly associative. The abstraction is given by $u(a) = 0$ for $a \notin B$. Then we have +\[ f' (f' 1 1) -1 = u(f (u (f 1 1)) -1) = u(f (u 2) -1) = u (f 0 -1) = -1, \] +but on the other hand we have +\[ f' 1 (f' 1 -1) = u (f 1 (u (f 1 -1))) = u (f 1 0) = 1.\] +A way out of this problem is to assume that $f(A\times A)\subset A$ holds, and this is what we are going to do: +*} + +lemma nonzero_positions_combine_infmatrix[simp]: "f 0 0 = 0 \ nonzero_positions (combine_infmatrix f A B) \ (nonzero_positions A) \ (nonzero_positions B)" +by (rule subsetI, simp add: nonzero_positions_def combine_infmatrix_def, auto) + +lemma finite_nonzero_positions_Rep[simp]: "finite (nonzero_positions (Rep_matrix A))" +by (insert Rep_matrix [of A], simp add: matrix_def) + +lemma combine_infmatrix_closed [simp]: + "f 0 0 = 0 \ Rep_matrix (Abs_matrix (combine_infmatrix f (Rep_matrix A) (Rep_matrix B))) = combine_infmatrix f (Rep_matrix A) (Rep_matrix B)" +apply (rule Abs_matrix_inverse) +apply (simp add: matrix_def) +apply (rule finite_subset[of _ "(nonzero_positions (Rep_matrix A)) \ (nonzero_positions (Rep_matrix B))"]) +by (simp_all) + +text {* We need the next two lemmas only later, but it is analog to the above one, so we prove them now: *} +lemma nonzero_positions_apply_infmatrix[simp]: "f 0 = 0 \ nonzero_positions (apply_infmatrix f A) \ nonzero_positions A" +by (rule subsetI, simp add: nonzero_positions_def apply_infmatrix_def, auto) + +lemma apply_infmatrix_closed [simp]: + "f 0 = 0 \ Rep_matrix (Abs_matrix (apply_infmatrix f (Rep_matrix A))) = apply_infmatrix f (Rep_matrix A)" +apply (rule Abs_matrix_inverse) +apply (simp add: matrix_def) +apply (rule finite_subset[of _ "nonzero_positions (Rep_matrix A)"]) +by (simp_all) + +lemma combine_infmatrix_assoc[simp]: "f 0 0 = 0 \ associative f \ associative (combine_infmatrix f)" +by (simp add: associative_def combine_infmatrix_def) + +lemma comb: "f = g \ x = y \ f x = g y" +by (auto) + +lemma combine_matrix_assoc: "f 0 0 = 0 \ associative f \ associative (combine_matrix f)" +apply (simp(no_asm) add: associative_def combine_matrix_def, auto) +apply (rule comb [of Abs_matrix Abs_matrix]) +by (auto, insert combine_infmatrix_assoc[of f], simp add: associative_def) + +lemma Rep_apply_matrix[simp]: "f 0 = 0 \ Rep_matrix (apply_matrix f A) j i = f (Rep_matrix A j i)" +by (simp add: apply_matrix_def) + +lemma Rep_combine_matrix[simp]: "f 0 0 = 0 \ Rep_matrix (combine_matrix f A B) j i = f (Rep_matrix A j i) (Rep_matrix B j i)" + by(simp add: combine_matrix_def) + +lemma combine_nrows: "f 0 0 = 0 \ nrows (combine_matrix f A B) <= max (nrows A) (nrows B)" +by (simp add: nrows_le) + +lemma combine_ncols: "f 0 0 = 0 \ ncols (combine_matrix f A B) <= max (ncols A) (ncols B)" +by (simp add: ncols_le) + +lemma combine_nrows: "f 0 0 = 0 \ nrows A <= q \ nrows B <= q \ nrows(combine_matrix f A B) <= q" + by (simp add: nrows_le) + +lemma combine_ncols: "f 0 0 = 0 \ ncols A <= q \ ncols B <= q \ ncols(combine_matrix f A B) <= q" + by (simp add: ncols_le) + +constdefs + zero_r_neutral :: "('a \ ('b::zero) \ 'a) \ bool" + "zero_r_neutral f == ! a. f a 0 = a" + zero_l_neutral :: "('a \ ('b::zero) \ 'a) \ bool" + "zero_l_neutral f == ! a. f 0 a = a" + zero_closed :: "(('a::zero) \ ('b::zero) \ ('c::zero)) \ bool" + "zero_closed f == (!x. f x 0 = 0) & (!y. f 0 y = 0)" + +consts foldseq :: "('a \ 'a \ 'a) \ (nat \ 'a) \ nat \ 'a" +primrec + "foldseq f s 0 = s 0" + "foldseq f s (Suc n) = f (s 0) (foldseq f (% k. s(Suc k)) n)" + +consts foldseq_transposed :: "('a \ 'a \ 'a) \ (nat \ 'a) \ nat \ 'a" +primrec + "foldseq_transposed f s 0 = s 0" + "foldseq_transposed f s (Suc n) = f (foldseq_transposed f s n) (s (Suc n))" + +lemma foldseq_assoc : "associative f \ foldseq f = foldseq_transposed f" +proof - + assume a:"associative f" + then have sublemma: "!! n. ! N s. N <= n \ foldseq f s N = foldseq_transposed f s N" + proof - + fix n + show "!N s. N <= n \ foldseq f s N = foldseq_transposed f s N" + proof (induct n) + show "!N s. N <= 0 \ foldseq f s N = foldseq_transposed f s N" by simp + next + fix n + assume b:"! N s. N <= n \ foldseq f s N = foldseq_transposed f s N" + have c:"!!N s. N <= n \ foldseq f s N = foldseq_transposed f s N" by (simp add: b) + show "! N t. N <= Suc n \ foldseq f t N = foldseq_transposed f t N" + proof (auto) + fix N t + assume Nsuc: "N <= Suc n" + show "foldseq f t N = foldseq_transposed f t N" + proof cases + assume "N <= n" + then show "foldseq f t N = foldseq_transposed f t N" by (simp add: b) + next + assume "~(N <= n)" + with Nsuc have Nsuceq: "N = Suc n" by simp + have neqz: "n \ 0 \ ? m. n = Suc m & Suc m <= n" by arith + have assocf: "!! x y z. f x (f y z) = f (f x y) z" by (insert a, simp add: associative_def) + show "foldseq f t N = foldseq_transposed f t N" + apply (simp add: Nsuceq) + apply (subst c) + apply (simp) + apply (case_tac "n = 0") + apply (simp) + apply (drule neqz) + apply (erule exE) + apply (simp) + apply (subst assocf) + proof - + fix m + assume "n = Suc m & Suc m <= n" + then have mless: "Suc m <= n" by arith + then have step1: "foldseq_transposed f (% k. t (Suc k)) m = foldseq f (% k. t (Suc k)) m" (is "?T1 = ?T2") + apply (subst c) + by simp+ + have step2: "f (t 0) ?T2 = foldseq f t (Suc m)" (is "_ = ?T3") by simp + have step3: "?T3 = foldseq_transposed f t (Suc m)" (is "_ = ?T4") + apply (subst c) + by (simp add: mless)+ + have step4: "?T4 = f (foldseq_transposed f t m) (t (Suc m))" (is "_=?T5") by simp + from step1 step2 step3 step4 show sowhat: "f (f (t 0) ?T1) (t (Suc (Suc m))) = f ?T5 (t (Suc (Suc m)))" by simp + qed + qed + qed + qed + qed + show "foldseq f = foldseq_transposed f" by ((rule ext)+, insert sublemma, auto) + qed + +lemma foldseq_distr: "\associative f; commutative f\ \ foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" +proof - + assume assoc: "associative f" + assume comm: "commutative f" + from assoc have a:"!! x y z. f (f x y) z = f x (f y z)" by (simp add: associative_def) + from comm have b: "!! x y. f x y = f y x" by (simp add: commutative_def) + from assoc comm have c: "!! x y z. f x (f y z) = f y (f x z)" by (simp add: commutative_def associative_def) + have "!! n. (! u v. foldseq f (%k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n))" + apply (induct_tac n) + apply (simp+, auto) + by (simp add: a b c) + then show "foldseq f (% k. f (u k) (v k)) n = f (foldseq f u n) (foldseq f v n)" by simp +qed + +theorem "\associative f; associative g; \a b c d. g (f a b) (f c d) = f (g a c) (g b d); ? x y. (f x) \ (f y); ? x y. (g x) \ (g y); f x x = x; g x x = x\ \ f=g | (! y. f y x = y) | (! y. g y x = y)" +oops +(* Model found + +Trying to find a model that refutes: \associative f; associative g; + \a b c d. g (f a b) (f c d) = f (g a c) (g b d); \x y. f x \ f y; + \x y. g x \ g y; f x x = x; g x x = x\ +\ f = g \ (\y. f y x = y) \ (\y. g y x = y) +Searching for a model of size 1, translating term... invoking SAT solver... no model found. +Searching for a model of size 2, translating term... invoking SAT solver... no model found. +Searching for a model of size 3, translating term... invoking SAT solver... +Model found: +Size of types: 'a: 3 +x: a1 +g: (a0\(a0\a1, a1\a0, a2\a1), a1\(a0\a0, a1\a1, a2\a0), a2\(a0\a1, a1\a0, a2\a1)) +f: (a0\(a0\a0, a1\a0, a2\a0), a1\(a0\a1, a1\a1, a2\a1), a2\(a0\a0, a1\a0, a2\a0)) +*) + +lemma foldseq_zero: +assumes fz: "f 0 0 = 0" and sz: "! i. i <= n \ s i = 0" +shows "foldseq f s n = 0" +proof - + have "!! n. ! s. (! i. i <= n \ s i = 0) \ foldseq f s n = 0" + apply (induct_tac n) + apply (simp) + by (simp add: fz) + then show "foldseq f s n = 0" by (simp add: sz) +qed + +lemma foldseq_significant_positions: + assumes p: "! i. i <= N \ S i = T i" + shows "foldseq f S N = foldseq f T N" (is ?concl) +proof - + have "!! m . ! s t. (! i. i<=m \ s i = t i) \ foldseq f s m = foldseq f t m" + apply (induct_tac m) + apply (simp) + apply (simp) + apply (auto) + proof - + fix n + fix s::"nat\'a" + fix t::"nat\'a" + assume a: "\s t. (\i\n. s i = t i) \ foldseq f s n = foldseq f t n" + assume b: "\i\Suc n. s i = t i" + have c:"!! a b. a = b \ f (t 0) a = f (t 0) b" by blast + have d:"!! s t. (\i\n. s i = t i) \ foldseq f s n = foldseq f t n" by (simp add: a) + show "f (t 0) (foldseq f (\k. s (Suc k)) n) = f (t 0) (foldseq f (\k. t (Suc k)) n)" by (rule c, simp add: d b) + qed + with p show ?concl by simp +qed + +lemma foldseq_tail: "M <= N \ foldseq f S N = foldseq f (% k. (if k < M then (S k) else (foldseq f (% k. S(k+M)) (N-M)))) M" (is "?p \ ?concl") +proof - + have suc: "!! a b. \a <= Suc b; a \ Suc b\ \ a <= b" by arith + have suc2: "!! a b. \a <= Suc b; ~ (a <= b)\ \ a = (Suc b)" by arith + have eq: "!! (a::nat) b. \~(a < b); a <= b\ \ a = b" by arith + have a:"!! a b c . a = b \ f c a = f c b" by blast + have "!! n. ! m s. m <= n \ foldseq f s n = foldseq f (% k. (if k < m then (s k) else (foldseq f (% k. s(k+m)) (n-m)))) m" + apply (induct_tac n) + apply (simp) + apply (simp) + apply (auto) + apply (case_tac "m = Suc na") + apply (simp) + apply (rule a) + apply (rule foldseq_significant_positions) + apply (simp, auto) + apply (drule eq, simp+) + apply (drule suc, simp+) + proof - + fix na m s + assume suba:"\m\na. \s. foldseq f s na = foldseq f (\k. if k < m then s k else foldseq f (\k. s (k + m)) (na - m))m" + assume subb:"m <= na" + from suba have subc:"!! m s. m <= na \foldseq f s na = foldseq f (\k. if k < m then s k else foldseq f (\k. s (k + m)) (na - m))m" by simp + have subd: "foldseq f (\k. if k < m then s (Suc k) else foldseq f (\k. s (Suc (k + m))) (na - m)) m = + foldseq f (% k. s(Suc k)) na" + by (rule subc[of m "% k. s(Suc k)", THEN sym], simp add: subb) + from subb have sube: "m \ 0 \ ? mm. m = Suc mm & mm <= na" by arith + show "f (s 0) (foldseq f (\k. if k < m then s (Suc k) else foldseq f (\k. s (Suc (k + m))) (na - m)) m) = + foldseq f (\k. if k < m then s k else foldseq f (\k. s (k + m)) (Suc na - m)) m" + apply (simp add: subd) + apply (case_tac "m=0") + apply (simp) + apply (drule sube) + apply (auto) + apply (rule a) + by (simp add: subc if_def) + qed + then show "?p \ ?concl" by simp +qed + +lemma foldseq_zerotail: + assumes + fz: "f 0 0 = 0" + and sz: "! i. n <= i \ s i = 0" + and nm: "n <= m" + shows + "foldseq f s n = foldseq f s m" +proof - + have a: "!! a b. ~(a < b) \ a <= b \ (a::nat) = b" by simp + show "foldseq f s n = foldseq f s m" + apply (simp add: foldseq_tail[OF nm, of f s]) + apply (rule foldseq_significant_positions) + apply (auto) + apply (drule a) + apply (simp+) + apply (subst foldseq_zero) + by (simp add: fz sz)+ +qed + +lemma foldseq_zerotail2: + assumes "! x. f x 0 = x" + and "! i. n < i \ s i = 0" + and nm: "n <= m" + shows + "foldseq f s n = foldseq f s m" (is ?concl) +proof - + have "f 0 0 = 0" by (simp add: prems) + have a:"!! (i::nat) m. ~(i < m) \ i <= m \ i = m" by arith + have b:"!! m n. n <= m \ m \ n \ ? k. m-n = Suc k" by arith + have c: "0 <= m" by simp + have d: "!! k. k \ 0 \ ? l. k = Suc l" by arith + show ?concl + apply (subst foldseq_tail[OF nm]) + apply (rule foldseq_significant_positions) + apply (auto) + apply (case_tac "m=n") + apply (drule a, simp+) + apply (drule b[OF nm]) + apply (auto) + apply (drule a) + apply simp+ + apply (case_tac "k=0") + apply (simp add: prems) + apply (drule d) + apply (auto) + by (simp add: prems foldseq_zero) +qed + +lemma foldseq_zerostart: + "! x. f 0 (f 0 x) = f 0 x \ ! i. i <= n \ s i = 0 \ foldseq f s (Suc n) = f 0 (s (Suc n))" +proof - + assume f00x: "! x. f 0 (f 0 x) = f 0 x" + have "! s. (! i. i<=n \ s i = 0) \ foldseq f s (Suc n) = f 0 (s (Suc n))" + apply (induct n) + apply (simp) + apply (rule allI, rule impI) + proof - + fix n + fix s + have a:"foldseq f s (Suc (Suc n)) = f (s 0) (foldseq f (% k. s(Suc k)) (Suc n))" by simp + assume b: "! s. ((\i\n. s i = 0) \ foldseq f s (Suc n) = f 0 (s (Suc n)))" + from b have c:"!! s. (\i\n. s i = 0) \ foldseq f s (Suc n) = f 0 (s (Suc n))" by simp + assume d: "! i. i <= Suc n \ s i = 0" + show "foldseq f s (Suc (Suc n)) = f 0 (s (Suc (Suc n)))" + apply (subst a) + apply (subst c) + by (simp add: d f00x)+ + qed + then show "! i. i <= n \ s i = 0 \ foldseq f s (Suc n) = f 0 (s (Suc n))" by simp +qed + +lemma foldseq_zerostart2: + "! x. f 0 x = x \ ! i. i < n \ s i = 0 \ foldseq f s n = s n" +proof - + assume a:"! i. i s i = 0" + assume x:"! x. f 0 x = x" + from x have f00x: "! x. f 0 (f 0 x) = f 0 x" by blast + have b: "!! i l. i < Suc l = (i <= l)" by arith + have d: "!! k. k \ 0 \ ? l. k = Suc l" by arith + show "foldseq f s n = s n" + apply (case_tac "n=0") + apply (simp) + apply (insert a) + apply (drule d) + apply (auto) + apply (simp add: b) + apply (insert f00x) + apply (drule foldseq_zerostart) + by (simp add: x)+ +qed + +lemma foldseq_almostzero: + assumes f0x:"! x. f 0 x = x" and fx0: "! x. f x 0 = x" and s0:"! i. i \ j \ s i = 0" + shows "foldseq f s n = (if (j <= n) then (s j) else 0)" (is ?concl) +proof - + from s0 have a: "! i. i < j \ s i = 0" by simp + from s0 have b: "! i. j < i \ s i = 0" by simp + show ?concl + apply auto + apply (subst foldseq_zerotail2[of f, OF fx0, of j, OF b, of n, THEN sym]) + apply simp + apply (subst foldseq_zerostart2) + apply (simp add: f0x a)+ + apply (subst foldseq_zero) + by (simp add: s0 f0x)+ +qed + +lemma foldseq_distr_unary: + assumes "!! a b. g (f a b) = f (g a) (g b)" + shows "g(foldseq f s n) = foldseq f (% x. g(s x)) n" (is ?concl) +proof - + have "! s. g(foldseq f s n) = foldseq f (% x. g(s x)) n" + apply (induct_tac n) + apply (simp) + apply (simp) + apply (auto) + apply (drule_tac x="% k. s (Suc k)" in spec) + by (simp add: prems) + then show ?concl by simp +qed + +constdefs + mult_matrix_n :: "nat \ (('a::zero) \ ('b::zero) \ ('c::zero)) \ ('c \ 'c \ 'c) \ 'a matrix \ 'b matrix \ 'c matrix" + "mult_matrix_n n fmul fadd A B == Abs_matrix(% j i. foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) n)" + mult_matrix :: "(('a::zero) \ ('b::zero) \ ('c::zero)) \ ('c \ 'c \ 'c) \ 'a matrix \ 'b matrix \ 'c matrix" + "mult_matrix fmul fadd A B == mult_matrix_n (max (ncols A) (nrows B)) fmul fadd A B" + +lemma mult_matrix_n: + assumes prems: "ncols A \ n" (is ?An) "nrows B \ n" (is ?Bn) "fadd 0 0 = 0" "fmul 0 0 = 0" + shows c:"mult_matrix fmul fadd A B = mult_matrix_n n fmul fadd A B" (is ?concl) +proof - + show ?concl using prems + apply (simp add: mult_matrix_def mult_matrix_n_def) + apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) + by (rule foldseq_zerotail, simp_all add: nrows_le ncols_le prems) +qed + +lemma mult_matrix_nm: + assumes prems: "ncols A <= n" "nrows B <= n" "ncols A <= m" "nrows B <= m" "fadd 0 0 = 0" "fmul 0 0 = 0" + shows "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" +proof - + from prems have "mult_matrix_n n fmul fadd A B = mult_matrix fmul fadd A B" by (simp add: mult_matrix_n) + also from prems have "\ = mult_matrix_n m fmul fadd A B" by (simp add: mult_matrix_n[THEN sym]) + finally show "mult_matrix_n n fmul fadd A B = mult_matrix_n m fmul fadd A B" by simp +qed + +constdefs + r_distributive :: "('a \ 'b \ 'b) \ ('b \ 'b \ 'b) \ bool" + "r_distributive fmul fadd == ! a u v. fmul a (fadd u v) = fadd (fmul a u) (fmul a v)" + l_distributive :: "('a \ 'b \ 'a) \ ('a \ 'a \ 'a) \ bool" + "l_distributive fmul fadd == ! a u v. fmul (fadd u v) a = fadd (fmul u a) (fmul v a)" + distributive :: "('a \ 'a \ 'a) \ ('a \ 'a \ 'a) \ bool" + "distributive fmul fadd == l_distributive fmul fadd & r_distributive fmul fadd" + +lemma max1: "!! a x y. (a::nat) <= x \ a <= max x y" by (arith) +lemma max2: "!! b x y. (b::nat) <= y \ b <= max x y" by (arith) + +lemma r_distributive_matrix: + assumes prems: + "r_distributive fmul fadd" + "associative fadd" + "commutative fadd" + "fadd 0 0 = 0" + "! a. fmul a 0 = 0" + "! a. fmul 0 a = 0" + shows "r_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl) +proof - + from prems show ?concl + apply (simp add: r_distributive_def mult_matrix_def, auto) + proof - + fix a::"'a matrix" + fix u::"'b matrix" + fix v::"'b matrix" + let ?mx = "max (ncols a) (max (nrows u) (nrows v))" + from prems show "mult_matrix_n (max (ncols a) (nrows (combine_matrix fadd u v))) fmul fadd a (combine_matrix fadd u v) = + combine_matrix fadd (mult_matrix_n (max (ncols a) (nrows u)) fmul fadd a u) (mult_matrix_n (max (ncols a) (nrows v)) fmul fadd a v)" + apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) + apply (simp add: max1 max2 combine_nrows combine_ncols)+ + apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) + apply (simp add: max1 max2 combine_nrows combine_ncols)+ + apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) + apply (simp add: max1 max2 combine_nrows combine_ncols)+ + apply (simp add: mult_matrix_n_def r_distributive_def foldseq_distr[of fadd]) + apply (simp add: combine_matrix_def combine_infmatrix_def) + apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) + apply (subst RepAbs_matrix) + apply (simp, auto) + apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero) + apply (rule exI[of _ "ncols v"], simp add: ncols_le foldseq_zero) + apply (subst RepAbs_matrix) + apply (simp, auto) + apply (rule exI[of _ "nrows a"], simp add: nrows_le foldseq_zero) + apply (rule exI[of _ "ncols u"], simp add: ncols_le foldseq_zero) + done + qed +qed + +lemma l_distributive_matrix: + assumes prems: + "l_distributive fmul fadd" + "associative fadd" + "commutative fadd" + "fadd 0 0 = 0" + "! a. fmul a 0 = 0" + "! a. fmul 0 a = 0" + shows "l_distributive (mult_matrix fmul fadd) (combine_matrix fadd)" (is ?concl) +proof - + from prems show ?concl + apply (simp add: l_distributive_def mult_matrix_def, auto) + proof - + fix a::"'b matrix" + fix u::"'a matrix" + fix v::"'a matrix" + let ?mx = "max (nrows a) (max (ncols u) (ncols v))" + from prems show "mult_matrix_n (max (ncols (combine_matrix fadd u v)) (nrows a)) fmul fadd (combine_matrix fadd u v) a = + combine_matrix fadd (mult_matrix_n (max (ncols u) (nrows a)) fmul fadd u a) (mult_matrix_n (max (ncols v) (nrows a)) fmul fadd v a)" + apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) + apply (simp add: max1 max2 combine_nrows combine_ncols)+ + apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) + apply (simp add: max1 max2 combine_nrows combine_ncols)+ + apply (subst mult_matrix_nm[of _ _ _ ?mx fadd fmul]) + apply (simp add: max1 max2 combine_nrows combine_ncols)+ + apply (simp add: mult_matrix_n_def l_distributive_def foldseq_distr[of fadd]) + apply (simp add: combine_matrix_def combine_infmatrix_def) + apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) + apply (subst RepAbs_matrix) + apply (simp, auto) + apply (rule exI[of _ "nrows v"], simp add: nrows_le foldseq_zero) + apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero) + apply (subst RepAbs_matrix) + apply (simp, auto) + apply (rule exI[of _ "nrows u"], simp add: nrows_le foldseq_zero) + apply (rule exI[of _ "ncols a"], simp add: ncols_le foldseq_zero) + done + qed +qed + + +instance matrix :: (zero)zero by intro_classes + +defs(overloaded) + zero_matrix_def: "(0::('a::zero) matrix) == Abs_matrix(% j i. 0)" + +lemma Rep_zero_matrix_def[simp]: "Rep_matrix 0 j i = 0" + apply (simp add: zero_matrix_def) + apply (subst RepAbs_matrix) + by (auto) + +lemma zero_matrix_def_nrows[simp]: "nrows 0 = 0" +proof - + have a:"!! (x::nat). x <= 0 \ x = 0" by (arith) + show "nrows 0 = 0" by (rule a, subst nrows_le, simp) +qed + +lemma zero_matrix_def_ncols[simp]: "ncols 0 = 0" +proof - + have a:"!! (x::nat). x <= 0 \ x = 0" by (arith) + show "ncols 0 = 0" by (rule a, subst ncols_le, simp) +qed + +lemma combine_matrix_zero_r_neutral: "zero_r_neutral f \ zero_r_neutral (combine_matrix f)" + by (simp add: zero_r_neutral_def combine_matrix_def combine_infmatrix_def) + +lemma mult_matrix_zero_closed: "\fadd 0 0 = 0; zero_closed fmul\ \ zero_closed (mult_matrix fmul fadd)" + apply (simp add: zero_closed_def mult_matrix_def mult_matrix_n_def) + apply (auto) + by (subst foldseq_zero, (simp add: zero_matrix_def)+)+ + +lemma mult_matrix_n_zero_right[simp]: "\fadd 0 0 = 0; !a. fmul a 0 = 0\ \ mult_matrix_n n fmul fadd A 0 = 0" + apply (simp add: mult_matrix_n_def) + apply (subst foldseq_zero) + by (simp_all add: zero_matrix_def) + +lemma mult_matrix_n_zero_left[simp]: "\fadd 0 0 = 0; !a. fmul 0 a = 0\ \ mult_matrix_n n fmul fadd 0 A = 0" + apply (simp add: mult_matrix_n_def) + apply (subst foldseq_zero) + by (simp_all add: zero_matrix_def) + +lemma mult_matrix_zero_left[simp]: "\fadd 0 0 = 0; !a. fmul 0 a = 0\ \ mult_matrix fmul fadd 0 A = 0" +by (simp add: mult_matrix_def) + +lemma mult_matrix_zero_right[simp]: "\fadd 0 0 = 0; !a. fmul a 0 = 0\ \ mult_matrix fmul fadd A 0 = 0" +by (simp add: mult_matrix_def) + +lemma apply_matrix_zero[simp]: "f 0 = 0 \ apply_matrix f 0 = 0" + apply (simp add: apply_matrix_def apply_infmatrix_def) + by (simp add: zero_matrix_def) + +lemma combine_matrix_zero: "f 0 0 = 0 \ combine_matrix f 0 0 = 0" + apply (simp add: combine_matrix_def combine_infmatrix_def) + by (simp add: zero_matrix_def) + +lemma apply_zero_matrix_def[simp]: "apply_matrix (% x. 0) A = 0" + apply (simp add: apply_matrix_def apply_infmatrix_def) + by (simp add: zero_matrix_def) + +constdefs + singleton_matrix :: "nat \ nat \ ('a::zero) \ 'a matrix" + "singleton_matrix j i a == Abs_matrix(% m n. if j = m & i = n then a else 0)" + move_matrix :: "('a::zero) matrix \ int \ int \ 'a matrix" + "move_matrix A y x == Abs_matrix(% j i. if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat ((int j)-y)) (nat ((int i)-x)))" + take_rows :: "('a::zero) matrix \ nat \ 'a matrix" + "take_rows A r == Abs_matrix(% j i. if (j < r) then (Rep_matrix A j i) else 0)" + take_columns :: "('a::zero) matrix \ nat \ 'a matrix" + "take_columns A c == Abs_matrix(% j i. if (i < c) then (Rep_matrix A j i) else 0)" + +constdefs + column_of_matrix :: "('a::zero) matrix \ nat \ 'a matrix" + "column_of_matrix A n == take_columns (move_matrix A 0 (- int n)) 1" + row_of_matrix :: "('a::zero) matrix \ nat \ 'a matrix" + "row_of_matrix A m == take_rows (move_matrix A (- int m) 0) 1" + +lemma Rep_singleton_matrix[simp]: "Rep_matrix (singleton_matrix j i e) m n = (if j = m & i = n then e else 0)" +apply (simp add: singleton_matrix_def) +apply (auto) +apply (subst RepAbs_matrix) +apply (rule exI[of _ "Suc m"], simp) +apply (rule exI[of _ "Suc n"], simp+) +by (subst RepAbs_matrix, rule exI[of _ "Suc j"], simp, rule exI[of _ "Suc i"], simp+)+ + +lemma singleton_matrix_zero[simp]: "singleton_matrix j i 0 = 0" + by (simp add: singleton_matrix_def zero_matrix_def) + +lemma nrows_singleton[simp]: "nrows(singleton_matrix j i e) = (if e = 0 then 0 else Suc j)" +apply (auto) +apply (rule le_anti_sym) +apply (subst nrows_le) +apply (simp add: singleton_matrix_def, auto) +apply (subst RepAbs_matrix) +apply (simp, arith) +apply (simp, arith) +apply (simp) +apply (simp add: Suc_le_eq) +apply (rule not_leE) +apply (subst nrows_le) +by simp + +lemma ncols_singleton[simp]: "ncols(singleton_matrix j i e) = (if e = 0 then 0 else Suc i)" +apply (auto) +apply (rule le_anti_sym) +apply (subst ncols_le) +apply (simp add: singleton_matrix_def, auto) +apply (subst RepAbs_matrix) +apply (simp, arith) +apply (simp, arith) +apply (simp) +apply (simp add: Suc_le_eq) +apply (rule not_leE) +apply (subst ncols_le) +by simp + +lemma combine_singleton: "f 0 0 = 0 \ combine_matrix f (singleton_matrix j i a) (singleton_matrix j i b) = singleton_matrix j i (f a b)" +apply (simp add: singleton_matrix_def combine_matrix_def combine_infmatrix_def) +apply (subst RepAbs_matrix) +apply (rule exI[of _ "Suc j"], simp) +apply (rule exI[of _ "Suc i"], simp) +apply (rule comb[of "Abs_matrix" "Abs_matrix"], simp, (rule ext)+) +apply (subst RepAbs_matrix) +apply (rule exI[of _ "Suc j"], simp) +apply (rule exI[of _ "Suc i"], simp) +by simp + +lemma Rep_move_matrix[simp]: + "Rep_matrix (move_matrix A y x) j i = + (if (neg ((int j)-y)) | (neg ((int i)-x)) then 0 else Rep_matrix A (nat((int j)-y)) (nat((int i)-x)))" +apply (simp add: move_matrix_def) +apply (auto) +by (subst RepAbs_matrix, + rule exI[of _ "(nrows A)+(nat (abs y))"], auto, rule nrows, arith, + rule exI[of _ "(ncols A)+(nat (abs x))"], auto, rule ncols, arith)+ + +lemma Rep_take_columns[simp]: + "Rep_matrix (take_columns A c) j i = + (if i < c then (Rep_matrix A j i) else 0)" +apply (simp add: take_columns_def) +apply (subst RepAbs_matrix) +apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le) +apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le) +done + +lemma Rep_take_rows[simp]: + "Rep_matrix (take_rows A r) j i = + (if j < r then (Rep_matrix A j i) else 0)" +apply (simp add: take_rows_def) +apply (subst RepAbs_matrix) +apply (rule exI[of _ "nrows A"], auto, simp add: nrows_le) +apply (rule exI[of _ "ncols A"], auto, simp add: ncols_le) +done + +lemma Rep_column_of_matrix[simp]: + "Rep_matrix (column_of_matrix A c) j i = (if i = 0 then (Rep_matrix A j c) else 0)" + by (simp add: column_of_matrix_def) + +lemma Rep_row_of_matrix[simp]: + "Rep_matrix (row_of_matrix A r) j i = (if j = 0 then (Rep_matrix A r i) else 0)" + by (simp add: row_of_matrix_def) + +lemma mult_matrix_singleton_right[simp]: + assumes prems: + "! x. fmul x 0 = 0" + "! x. fmul 0 x = 0" + "! x. fadd 0 x = x" + "! x. fadd x 0 = x" + shows "(mult_matrix fmul fadd A (singleton_matrix j i e)) = apply_matrix (% x. fmul x e) (move_matrix (column_of_matrix A j) 0 (int i))" + apply (simp add: mult_matrix_def) + apply (subst mult_matrix_nm[of _ _ _ "max (ncols A) (Suc j)"]) + apply (simp add: max_def)+ + apply (auto) + apply (simp add: prems)+ + apply (simp add: mult_matrix_n_def apply_matrix_def apply_infmatrix_def) + apply (rule comb[of "Abs_matrix" "Abs_matrix"], auto, (rule ext)+) + apply (subst foldseq_almostzero[of _ j]) + apply (simp add: prems)+ + apply (auto) + apply (insert ncols_le[of A j]) + apply (arith) + proof - + fix k + fix l + assume a:"~neg(int l - int i)" + assume b:"nat (int l - int i) = 0" + from a b have a: "l = i" by(insert not_neg_nat[of "int l - int i"], simp add: a b) + assume c: "i \ l" + from c a show "fmul (Rep_matrix A k j) e = 0" by blast + qed + +lemma mult_matrix_ext: + assumes + eprem: + "? e. (! a b. a \ b \ fmul a e \ fmul b e)" + and fprems: + "! a. fmul 0 a = 0" + "! a. fmul a 0 = 0" + "! a. fadd a 0 = a" + "! a. fadd 0 a = a" + and contraprems: + "mult_matrix fmul fadd A = mult_matrix fmul fadd B" + shows + "A = B" +proof(rule contrapos_np[of "False"], simp) + assume a: "A \ B" + have b: "!! f g. (! x y. f x y = g x y) \ f = g" by ((rule ext)+, auto) + have "? j i. (Rep_matrix A j i) \ (Rep_matrix B j i)" + apply (rule contrapos_np[of "False"], simp+) + apply (insert b[of "Rep_matrix A" "Rep_matrix B"], simp) + by (simp add: Rep_matrix_inject a) + then obtain J I where c:"(Rep_matrix A J I) \ (Rep_matrix B J I)" by blast + from eprem obtain e where eprops:"(! a b. a \ b \ fmul a e \ fmul b e)" by blast + let ?S = "singleton_matrix I 0 e" + let ?comp = "mult_matrix fmul fadd" + have d: "!!x f g. f = g \ f x = g x" by blast + have e: "(% x. fmul x e) 0 = 0" by (simp add: prems) + have "~(?comp A ?S = ?comp B ?S)" + apply (rule notI) + apply (simp add: fprems eprops) + apply (simp add: Rep_matrix_inject[THEN sym]) + apply (drule d[of _ _ "J"], drule d[of _ _ "0"]) + by (simp add: e c eprops) + with contraprems show "False" by simp +qed + +constdefs + foldmatrix :: "('a \ 'a \ 'a) \ ('a \ 'a \ 'a) \ ('a infmatrix) \ nat \ nat \ 'a" + "foldmatrix f g A m n == foldseq_transposed g (% j. foldseq f (A j) n) m" + foldmatrix_transposed :: "('a \ 'a \ 'a) \ ('a \ 'a \ 'a) \ ('a infmatrix) \ nat \ nat \ 'a" + "foldmatrix_transposed f g A m n == foldseq g (% j. foldseq_transposed f (A j) n) m" + +lemma foldmatrix_transpose: + assumes + "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)" + shows + "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" (is ?concl) +proof - + have forall:"!! P x. (! x. P x) \ P x" by auto + have tworows:"! A. foldmatrix f g A 1 n = foldmatrix_transposed g f (transpose_infmatrix A) n 1" + apply (induct n) + apply (simp add: foldmatrix_def foldmatrix_transposed_def prems)+ + apply (auto) + by (drule_tac x1="(% j i. A j (Suc i))" in forall, simp) + show "foldmatrix f g A m n = foldmatrix_transposed g f (transpose_infmatrix A) n m" + apply (simp add: foldmatrix_def foldmatrix_transposed_def) + apply (induct m, simp) + apply (simp) + apply (insert tworows) + apply (drule_tac x="% j i. (if j = 0 then (foldseq_transposed g (\u. A u i) na) else (A (Suc na) i))" in spec) + by (simp add: foldmatrix_def foldmatrix_transposed_def) +qed + +lemma foldseq_foldseq: +assumes + "associative f" + "associative g" + "! a b c d. g(f a b) (f c d) = f (g a c) (g b d)" +shows + "foldseq g (% j. foldseq f (A j) n) m = foldseq f (% j. foldseq g ((transpose_infmatrix A) j) m) n" + apply (insert foldmatrix_transpose[of g f A m n]) + by (simp add: foldmatrix_def foldmatrix_transposed_def foldseq_assoc[THEN sym] prems) + +lemma mult_n_nrows: +assumes +"! a. fmul 0 a = 0" +"! a. fmul a 0 = 0" +"fadd 0 0 = 0" +shows "nrows (mult_matrix_n n fmul fadd A B) \ nrows A" +apply (subst nrows_le) +apply (simp add: mult_matrix_n_def) +apply (subst RepAbs_matrix) +apply (rule_tac x="nrows A" in exI) +apply (simp add: nrows prems foldseq_zero) +apply (rule_tac x="ncols B" in exI) +apply (simp add: ncols prems foldseq_zero) +by (simp add: nrows prems foldseq_zero) + +lemma mult_n_ncols: +assumes +"! a. fmul 0 a = 0" +"! a. fmul a 0 = 0" +"fadd 0 0 = 0" +shows "ncols (mult_matrix_n n fmul fadd A B) \ ncols B" +apply (subst ncols_le) +apply (simp add: mult_matrix_n_def) +apply (subst RepAbs_matrix) +apply (rule_tac x="nrows A" in exI) +apply (simp add: nrows prems foldseq_zero) +apply (rule_tac x="ncols B" in exI) +apply (simp add: ncols prems foldseq_zero) +by (simp add: ncols prems foldseq_zero) + +lemma mult_nrows: +assumes +"! a. fmul 0 a = 0" +"! a. fmul a 0 = 0" +"fadd 0 0 = 0" +shows "nrows (mult_matrix fmul fadd A B) \ nrows A" +by (simp add: mult_matrix_def mult_n_nrows prems) + +lemma mult_ncols: +assumes +"! a. fmul 0 a = 0" +"! a. fmul a 0 = 0" +"fadd 0 0 = 0" +shows "ncols (mult_matrix fmul fadd A B) \ ncols B" +by (simp add: mult_matrix_def mult_n_ncols prems) + +lemma mult_matrix_assoc: + assumes prems: + "! a. fmul1 0 a = 0" + "! a. fmul1 a 0 = 0" + "! a. fmul2 0 a = 0" + "! a. fmul2 a 0 = 0" + "fadd1 0 0 = 0" + "fadd2 0 0 = 0" + "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)" + "associative fadd1" + "associative fadd2" + "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)" + "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)" + "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)" + shows "mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B) C = mult_matrix fmul1 fadd1 A (mult_matrix fmul2 fadd2 B C)" (is ?concl) +proof - + have comb_left: "!! A B x y. A = B \ (Rep_matrix (Abs_matrix A)) x y = (Rep_matrix(Abs_matrix B)) x y" by blast + have fmul2fadd1fold: "!! x s n. fmul2 (foldseq fadd1 s n) x = foldseq fadd1 (% k. fmul2 (s k) x) n" + by (rule_tac g1 = "% y. fmul2 y x" in ssubst [OF foldseq_distr_unary], simp_all!) + have fmul1fadd2fold: "!! x s n. fmul1 x (foldseq fadd2 s n) = foldseq fadd2 (% k. fmul1 x (s k)) n" + by (rule_tac g1 = "% y. fmul1 x y" in ssubst [OF foldseq_distr_unary], simp_all!) + let ?N = "max (ncols A) (max (ncols B) (max (nrows B) (nrows C)))" + show ?concl + apply (simp add: Rep_matrix_inject[THEN sym]) + apply (rule ext)+ + apply (simp add: mult_matrix_def) + apply (subst mult_matrix_nm[of _ "max (ncols (mult_matrix_n (max (ncols A) (nrows B)) fmul1 fadd1 A B)) (nrows C)" _ "max (ncols B) (nrows C)"]) + apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ + apply (subst mult_matrix_nm[of _ "max (ncols A) (nrows (mult_matrix_n (max (ncols B) (nrows C)) fmul2 fadd2 B C))" _ "max (ncols A) (nrows B)"]) apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ + apply (subst mult_matrix_nm[of _ _ _ "?N"]) + apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ + apply (subst mult_matrix_nm[of _ _ _ "?N"]) + apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ + apply (subst mult_matrix_nm[of _ _ _ "?N"]) + apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ + apply (subst mult_matrix_nm[of _ _ _ "?N"]) + apply (simp add: max1 max2 mult_n_ncols mult_n_nrows prems)+ + apply (simp add: mult_matrix_n_def) + apply (rule comb_left) + apply ((rule ext)+, simp) + apply (subst RepAbs_matrix) + apply (rule exI[of _ "nrows B"]) + apply (simp add: nrows prems foldseq_zero) + apply (rule exI[of _ "ncols C"]) + apply (simp add: prems ncols foldseq_zero) + apply (subst RepAbs_matrix) + apply (rule exI[of _ "nrows A"]) + apply (simp add: nrows prems foldseq_zero) + apply (rule exI[of _ "ncols B"]) + apply (simp add: prems ncols foldseq_zero) + apply (simp add: fmul2fadd1fold fmul1fadd2fold prems) + apply (subst foldseq_foldseq) + apply (simp add: prems)+ + by (simp add: transpose_infmatrix) +qed + +lemma + assumes prems: + "! a. fmul1 0 a = 0" + "! a. fmul1 a 0 = 0" + "! a. fmul2 0 a = 0" + "! a. fmul2 a 0 = 0" + "fadd1 0 0 = 0" + "fadd2 0 0 = 0" + "! a b c d. fadd2 (fadd1 a b) (fadd1 c d) = fadd1 (fadd2 a c) (fadd2 b d)" + "associative fadd1" + "associative fadd2" + "! a b c. fmul2 (fmul1 a b) c = fmul1 a (fmul2 b c)" + "! a b c. fmul2 (fadd1 a b) c = fadd1 (fmul2 a c) (fmul2 b c)" + "! a b c. fmul1 c (fadd2 a b) = fadd2 (fmul1 c a) (fmul1 c b)" + shows + "(mult_matrix fmul1 fadd1 A) o (mult_matrix fmul2 fadd2 B) = mult_matrix fmul2 fadd2 (mult_matrix fmul1 fadd1 A B)" +apply (rule ext)+ +apply (simp add: comp_def ) +by (simp add: mult_matrix_assoc prems) + +lemma mult_matrix_assoc_simple: + assumes prems: + "! a. fmul 0 a = 0" + "! a. fmul a 0 = 0" + "fadd 0 0 = 0" + "associative fadd" + "commutative fadd" + "associative fmul" + "distributive fmul fadd" + shows "mult_matrix fmul fadd (mult_matrix fmul fadd A B) C = mult_matrix fmul fadd A (mult_matrix fmul fadd B C)" (is ?concl) +proof - + have "!! a b c d. fadd (fadd a b) (fadd c d) = fadd (fadd a c) (fadd b d)" + by (simp! add: associative_def commutative_def) + then show ?concl + apply (subst mult_matrix_assoc) + apply (simp_all!) + by (simp add: associative_def distributive_def l_distributive_def r_distributive_def)+ +qed + +lemma transpose_apply_matrix: "f 0 = 0 \ transpose_matrix (apply_matrix f A) = apply_matrix f (transpose_matrix A)" +apply (simp add: Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +by simp + +lemma transpose_combine_matrix: "f 0 0 = 0 \ transpose_matrix (combine_matrix f A B) = combine_matrix f (transpose_matrix A) (transpose_matrix B)" +apply (simp add: Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +by simp + +lemma Rep_mult_matrix: + assumes + "! a. fmul 0 a = 0" + "! a. fmul a 0 = 0" + "fadd 0 0 = 0" + shows + "Rep_matrix(mult_matrix fmul fadd A B) j i = + foldseq fadd (% k. fmul (Rep_matrix A j k) (Rep_matrix B k i)) (max (ncols A) (nrows B))" +apply (simp add: mult_matrix_def mult_matrix_n_def) +apply (subst RepAbs_matrix) +apply (rule exI[of _ "nrows A"], simp! add: nrows foldseq_zero) +apply (rule exI[of _ "ncols B"], simp! add: ncols foldseq_zero) +by simp + +lemma transpose_mult_matrix: + assumes + "! a. fmul 0 a = 0" + "! a. fmul a 0 = 0" + "fadd 0 0 = 0" + "! x y. fmul y x = fmul x y" + shows + "transpose_matrix (mult_matrix fmul fadd A B) = mult_matrix fmul fadd (transpose_matrix B) (transpose_matrix A)" + apply (simp add: Rep_matrix_inject[THEN sym]) + apply (rule ext)+ + by (simp! add: Rep_mult_matrix max_ac) + +instance matrix :: ("{ord,zero}") ord by intro_classes + +defs (overloaded) + le_matrix_def: "(A::('a::{ord,zero}) matrix) <= B == ! j i. (Rep_matrix A j i) <= (Rep_matrix B j i)" + less_def: "(A::('a::{ord,zero}) matrix) < B == (A <= B) & (A \ B)" + +instance matrix :: ("{order, zero}") order +apply intro_classes +apply (simp_all add: le_matrix_def less_def) +apply (auto) +apply (drule_tac x=j in spec, drule_tac x=j in spec) +apply (drule_tac x=i in spec, drule_tac x=i in spec) +apply (simp) +apply (simp add: Rep_matrix_inject[THEN sym]) +apply (rule ext)+ +apply (drule_tac x=xa in spec, drule_tac x=xa in spec) +apply (drule_tac x=xb in spec, drule_tac x=xb in spec) +by simp + +lemma le_apply_matrix: + assumes + "f 0 = 0" + "! x y. x <= y \ f x <= f y" + "(a::('a::{ord, zero}) matrix) <= b" + shows + "apply_matrix f a <= apply_matrix f b" + by (simp! add: le_matrix_def) + +lemma le_combine_matrix: + assumes + "f 0 0 = 0" + "! a b c d. a <= b & c <= d \ f a c <= f b d" + "A <= B" + "C <= D" + shows + "combine_matrix f A C <= combine_matrix f B D" +by (simp! add: le_matrix_def) + +lemma le_left_combine_matrix: + assumes + "f 0 0 = 0" + "! a b c. 0 <= c & a <= b \ f c a <= f c b" + "0 <= C" + "A <= B" + shows + "combine_matrix f C A <= combine_matrix f C B" + by (simp! add: le_matrix_def) + +lemma le_right_combine_matrix: + assumes + "f 0 0 = 0" + "! a b c. 0 <= c & a <= b \ f a c <= f b c" + "0 <= C" + "A <= B" + shows + "combine_matrix f A C <= combine_matrix f B C" + by (simp! add: le_matrix_def) + +lemma le_transpose_matrix: "(A <= B) = (transpose_matrix A <= transpose_matrix B)" + by (simp add: le_matrix_def, auto) + +lemma le_foldseq: + assumes + "! a b c d . a <= b & c <= d \ f a c <= f b d" + "! i. i <= n \ s i <= t i" + shows + "foldseq f s n <= foldseq f t n" +proof - + have "! s t. (! i. i<=n \ s i <= t i) \ foldseq f s n <= foldseq f t n" by (induct_tac n, simp_all!) + then show "foldseq f s n <= foldseq f t n" by (simp!) +qed + +lemma le_left_mult: + assumes + "! a b c d. a <= b & c <= d \ fadd a c <= fadd b d" + "! c a b. 0 <= c & a <= b \ fmul c a <= fmul c b" + "! a. fmul 0 a = 0" + "! a. fmul a 0 = 0" + "fadd 0 0 = 0" + "0 <= C" + "A <= B" + shows + "mult_matrix fmul fadd C A <= mult_matrix fmul fadd C B" + apply (simp! add: le_matrix_def Rep_mult_matrix) + apply (auto) + apply (subst foldseq_zerotail[of _ _ _ "max (ncols C) (max (nrows A) (nrows B))"], simp_all add: nrows ncols max1 max2)+ + apply (rule le_foldseq) + by (auto) + +lemma le_right_mult: + assumes + "! a b c d. a <= b & c <= d \ fadd a c <= fadd b d" + "! c a b. 0 <= c & a <= b \ fmul a c <= fmul b c" + "! a. fmul 0 a = 0" + "! a. fmul a 0 = 0" + "fadd 0 0 = 0" + "0 <= C" + "A <= B" + shows + "mult_matrix fmul fadd A C <= mult_matrix fmul fadd B C" + apply (simp! add: le_matrix_def Rep_mult_matrix) + apply (auto) + apply (subst foldseq_zerotail[of _ _ _ "max (nrows C) (max (ncols A) (ncols B))"], simp_all add: nrows ncols max1 max2)+ + apply (rule le_foldseq) + by (auto) + +end