diff -r 845883bd3a6b -r 9200b36280c0 src/HOL/Finite_Set.thy --- a/src/HOL/Finite_Set.thy Thu Nov 29 07:55:46 2007 +0100 +++ b/src/HOL/Finite_Set.thy Thu Nov 29 17:08:26 2007 +0100 @@ -2689,7 +2689,7 @@ lemmas [code func] = univ_bool instance * :: (finite, finite) finite - "itself \ TYPE('a\finite)" + "itself \ TYPE('a \ 'b)" proof show "finite (UNIV :: ('a \ 'b) set)" proof (rule finite_Prod_UNIV) @@ -2703,7 +2703,7 @@ unfolding UNIV_Times_UNIV .. instance "+" :: (finite, finite) finite - "itself \ TYPE('a\finite + 'b\finite)" + "itself \ TYPE('a + 'b)" proof have a: "finite (UNIV :: 'a set)" by (rule finite) have b: "finite (UNIV :: 'b set)" by (rule finite) @@ -2717,7 +2717,7 @@ unfolding UNIV_Plus_UNIV .. instance set :: (finite) finite - "itself \ TYPE('a\finite set)" + "itself \ TYPE('a set)" proof have "finite (UNIV :: 'a set)" by (rule finite) hence "finite (Pow (UNIV :: 'a set))" @@ -2732,7 +2732,7 @@ by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq) instance "fun" :: (finite, finite) finite - "itself \ TYPE('a\finite \ 'b\finite)" + "itself \ TYPE('a \ 'b)" proof show "finite (UNIV :: ('a => 'b) set)" proof (rule finite_imageD)