diff -r 53d18ab990f6 -r 923e4d0d36d5 src/HOL/Library/Nat_Infinity.thy --- a/src/HOL/Library/Nat_Infinity.thy Wed Oct 03 20:54:05 2001 +0200 +++ b/src/HOL/Library/Nat_Infinity.thy Wed Oct 03 20:54:16 2001 +0200 @@ -95,7 +95,7 @@ lemma Fin_iless_Infty [simp]: "Fin n < \" by (simp add: inat_defs split:inat_splits, arith?) -lemma Infty_eq [simp]: "n < \ = (n \ \)" +lemma Infty_eq [simp]: "(n < \) = (n \ \)" by (simp add: inat_defs split:inat_splits, arith?) lemma i0_eq [simp]: "((0::inat) < n) = (n \ 0)" @@ -110,13 +110,13 @@ lemma Fin_iless: "n < Fin m ==> \k. n = Fin k" by (simp add: inat_defs split:inat_splits, arith?) -lemma iSuc_mono [simp]: "iSuc n < iSuc m = (n < m)" +lemma iSuc_mono [simp]: "(iSuc n < iSuc m) = (n < m)" by (simp add: inat_defs split:inat_splits, arith?) (* ----------------------------------------------------------------------- *) -lemma ile_def2: "m \ n = (m < n \ m = (n::inat))" +lemma ile_def2: "(m \ n) = (m < n \ m = (n::inat))" by (simp add: inat_defs split:inat_splits, arith?) lemma ile_refl [simp]: "n \ (n::inat)" @@ -149,13 +149,13 @@ lemma ileI1: "m < n ==> iSuc m \ n" by (simp add: inat_defs split:inat_splits, arith?) -lemma Suc_ile_eq: "Fin (Suc m) \ n = (Fin m < n)" +lemma Suc_ile_eq: "(Fin (Suc m) \ n) = (Fin m < n)" by (simp add: inat_defs split:inat_splits, arith?) -lemma iSuc_ile_mono [simp]: "iSuc n \ iSuc m = (n \ m)" +lemma iSuc_ile_mono [simp]: "(iSuc n \ iSuc m) = (n \ m)" by (simp add: inat_defs split:inat_splits, arith?) -lemma iless_Suc_eq [simp]: "Fin m < iSuc n = (Fin m \ n)" +lemma iless_Suc_eq [simp]: "(Fin m < iSuc n) = (Fin m \ n)" by (simp add: inat_defs split:inat_splits, arith?) lemma not_iSuc_ilei0 [simp]: "\ iSuc n \ 0"