diff -r 430d74089d4d -r 93c6f0da5c70 src/HOL/Library/Code_Target_Nat.thy --- a/src/HOL/Library/Code_Target_Nat.thy Sun Oct 16 09:31:04 2016 +0200 +++ b/src/HOL/Library/Code_Target_Nat.thy Sun Oct 16 09:31:05 2016 +0200 @@ -115,7 +115,7 @@ m' = 2 * of_nat m in if q = 0 then m' else m' + 1)" proof - - from mod_div_equality have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp + from div_mult_mod_eq have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp show ?thesis by (simp add: Let_def divmod_nat_div_mod of_nat_add [symmetric]) (simp add: * mult.commute of_nat_mult add.commute)