diff -r 9577530e8a5a -r 9529d31f39e0 doc-src/TutorialI/basics.tex --- a/doc-src/TutorialI/basics.tex Fri Jul 13 18:07:01 2001 +0200 +++ b/doc-src/TutorialI/basics.tex Fri Jul 13 18:08:26 2001 +0200 @@ -165,8 +165,8 @@ \textbf{Formulae}\indexbold{formula} are terms of type \isaindexbold{bool}. There are the basic constants \isaindexbold{True} and \isaindexbold{False} and the usual logical connectives (in decreasing order of priority): -\indexboldpos{\isasymnot}{$HOL0not}, \indexboldpos{\isasymand}{$HOL0and}, -\indexboldpos{\isasymor}{$HOL0or}, and \indexboldpos{\isasymimp}{$HOL0imp}, +\indexboldpos{\protect\isasymnot}{$HOL0not}, \indexboldpos{\protect\isasymand}{$HOL0and}, +\indexboldpos{\protect\isasymor}{$HOL0or}, and \indexboldpos{\protect\isasymimp}{$HOL0imp}, all of which (except the unary \isasymnot) associate to the right. In particular \isa{A \isasymimp~B \isasymimp~C} means \isa{A \isasymimp~(B \isasymimp~C)} and is thus logically equivalent to \isa{A \isasymand~B @@ -181,11 +181,13 @@ \isa{\isasymnot($t@1$ = $t@2$)}. Quantifiers are written as -\isa{\isasymforall{}x.~$P$}\indexbold{$HOL0All@\isasymforall} and -\isa{\isasymexists{}x.~$P$}\indexbold{$HOL0Ex@\isasymexists}. There is -even \isa{\isasymuniqex{}x.~$P$}\index{$HOL0ExU@\isasymuniqex|bold}, which -means that there exists exactly one \isa{x} that satisfies \isa{$P$}. Nested -quantifications can be abbreviated: \isa{\isasymforall{}x~y~z.~$P$} means +\isa{\isasymforall{}x.~$P$}\index{$HOL0All@\isasymforall|bold} and +\isa{\isasymexists{}x.~$P$}\index{$HOL0Ex@\isasymexists|bold}. +There is even +\isa{\isasymuniqex{}x.~$P$}\index{$HOL0ExU@\isasymuniqex|bold}, which +means that there exists exactly one \isa{x} that satisfies \isa{$P$}. +Nested quantifications can be abbreviated: +\isa{\isasymforall{}x~y~z.~$P$} means \isa{\isasymforall{}x.\isasymforall{}y.\isasymforall{}z.~$P$}. Despite type inference, it is sometimes necessary to attach explicit